Удельное электрическое сопротивление дистиллированной воды. pH - водородный показатель

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ

ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ»

ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ ВОДЫ С ПОМОЩЬЮ КОНДУКТОМЕТРА PWT Hanna Instruments

Лабораторная работа по курсу

(4 часа)

«Экологический аудит в энергетике

и промышленности»

Казань

2010 г.

Определение удельной электропроводности воды с помощью кондуктометра PWT Hanna Instruments

Цель работы

1. Познакомиться с устройством и принципом работы кондуктометра PWT Hanna Instruments.

2. Научиться определять электропроводность воды методом кондуктометрии, с помощью кондуктометра PWT Hanna Instruments.

3. Познакомиться с устройством и принципом работы дистиллятора и бидистиллятора, изучить изменение электропроводности воды до и после дистилляции.

Рабочее задание

1. Познакомьтесь с принципом работы кондуктометра PWT Hanna Instruments;

2. Познакомиться с устройством и принципом работы дистиллятора;

3. Провидите измерение электропроводности воды до и после дистилляции;

4. Опишите ход работы;

5. Оформите протокол результатов измерений;

6. Ответьте на контрольные вопросы.

Оборудование и реактивы

1. кондуктометр PWT Hanna Instruments;

2. дистиллятор;

3. бидистиллятор;

4. химические стаканы емкостью 150-200мл.

Теоретическая часть

Общие сведения

Электропроводность - это способность водного раствора проводить электрический ток, выраженная в числовой форме. Электропроводность природной воды зависит от степени минерализации (концентрации растворенных минеральных солей) и температуры. Поэтому по величине электрической проводимости воды можно судить о степени минерализации воды. Природная вода представляет собой раствор смесей сильных и слабых электролитов. Минеральная часть воды состоит из ионов натрия (Na+), калия (K+), кальция (Ca2+), хлора (Cl-), сульфата (SO42-), гидрокарбоната (HCO3-). Именно эти ионы и обуславливают электропроводность природных вод. Электропроводность зависит от: концентрации ионов, природы ионов, температуры раствора, вязкости раствора.


Чистая вода в результате ее собственной диссоциации имеет удельную электрическую проводимость при 25 С равную 5,483 мкСм/м.

Способы измерения электропроводности воды

Для определения величины электропроводности воды обычно применяют кондуктометрический метод.

Кондутометрия - (от англ. conductivity - электропроводность и греч. metreo - измеряю), электрохимический метод анализа растворов химических веществ и природных вод, основанный на измерении их электропроводности. Принципом кондуктометрического анализа является изменение химического состава среды или концентрации определённого вещества в межэлектронном пространстве. К достоинствам кондуктометрии относят: высокую чувствительность, достаточно высокую точность, простоту методик, доступность аппаратуры, возможность исследования окрашенных и мутных растворов, а также автоматизации анализа. Для измерения электропроводности водных растворов, расплавов, коллоидных систем используется специальный прибор – кондуктометр .

Области применения кондуктометрии

Кондуктометры применяются для контроля УЭП жидких сред в технологических процессах химических, нефтехимических производств, объектах энергетики (ТЭЦ, АЭС), где электрические свойства жидкостей характеризуют качество продукции.

Оценка качества дистиллированной воды по удельной электропроводности является хрестоматийной операцией. Дистиллированная вода должна обладать электропроводностью не более 10-6 сим (ом-1 ).

Описание кондуктометра PWT Hanna Instruments

Кондуктометр PWT Hanna Instruments - прибор, предназначенный для проведения экспресс-определния удельной электропроводности воды. Может быть использован как в лабораториях, так и в полевых условиях. Основные особенности прибора: ручная калибровка по одной точке, автоматическая термокомпенсация. Измерения электропроводности проводится с помощью кондуктометра ОК-102, позволяющего сразу определять величины удельной электропроводности в сименсах.

Вода питьевая" href="/text/category/voda_pitmzevaya/" rel="bookmark">очищенная вода от растворённых в ней минеральных солей, органических веществ, аммиака , двуокиси углерода и других примесей. Получают перегонкой в специальных аппаратах - дистилляторах.

В данной лабораторной работе для получения дистиллированной воды используется дистиллятор ДЭ-4 и бидистиллятор PURATOR-MONO.

Ход работы

Налейте воду из под крана в химический стакан емкостью 150-200 мл. Включите кондуктометр и помести его в исследуемый объем, результат измерений занести в протокол.

Налейте воду, полученную с помощью дистиллятора ДЭ-4 в химический стакан емкостью 150-200 мл. Включите кондуктометр и помести его в исследуемый объем, результат измерений занести в протокол. Повторите операцию с водой полученной с помощью бидистиллятора.

Протокол измерений

Контрольные вопросы

1. От чего зависит показатель электропроводности воды?

2. Какие методы определения удельной электропроводности воды Вам известны?

3. Какой прибор используется для определения удельной электропроводности воды?

5. Назовите область применения кондуктометрии.

6. Как получают дистиллированную воду?

Основные сведения. Измерение удельной электропроводности водных растворов получило широкое распространение в лабораторной практике, при автоматическом химическом контроле водного режима паросиловых установок, эффективности работы установок очистки воды и промышленных теплообменных и других установок, а также различных показателей качества, характеризующих химикотехнологические процессы.

Технические средства, предназначенные для измерения удельной электропроводимости водных растворов, принято называть кондуктометрическими анализаторами жидкости. Шкалу вторичных приборов кондуктометров жидкости (лабораторных и промышленных) для измерения удельной электропроводности градуируют в единицах сименс на сантиметр или микросименс на сантиметр Кондуктометры жидкости, которые применяют в производственных условиях для измерения показателей качества, характеризующих содержание солей в паре, конденсате и питательной воде парогенераторов, обычно называют солемерами. Шкалу вторичных приборов солемеров градуируют по (на условное содержание в растворе этих солей) в следующих единицах: миллиграмм на килограмм микрограмм на килограмм или миллиграмм на литр и микрограмм на литр Кондуктомеры жидкости, используемые для измерения концентрации растворов солей, кислот, щелочей и т. д., называют часто концентратомерами. Шкала вторичных приборов концентратомеров градуируется в процентах значения массовой концентрации. Кондуктометрические анализаторы жидкости используются также и в качестве сигнализаторов.

При повышенных требованиях к показателям качества питательной воды, пара и конденсата необходимо производить измерение малых значений электропроводности, не превышающих 5-б При контроле за истощением фильтров очистительных установок значение измеряемой электропроводности воды составляет , а при контроле концентрации растворов реагентов - от до .

Измерение электропроводности водных растворов обычно производят с помощью электродного кондуктометрического измерительного преобразователя, состоящего из двух электродов,

расположенных в сосуде, в который поступает контролируемый водный раствор. Устройство этих преобразователей и применяемые измерительные схемы кондуктометров жидкости рассматриваются ниже. Для измерения электропроводности растворов широко применяют также безэлектродные кондуктометры жидкости.

Удельная электропроводность представляет собой величину, обратную удельному сопротивлению:

Здесь удельная электропроводность, удельное сопротивление, Ом-см, определяемое выражением

где электрическое сопротивление фиксированного объема раствора с концентрацией С между металлическими электродами, Ом; эффективное поперечное сечение раствора, через которое протекает ток, расстояние между электродами, см.

Согласно уравнению (22-2-2) выражение (22-2-1) принимает вид:

где электрическая проводимость фиксированного объема раствора, Ом; постоянная электродного преобразователя,

Из выражения (22-2-3) имеем:

Для преобразователей с простой конфигурацией электродов постоянная может быть определена расчетным путем. Если преобразователь имеет сложную конструкцию, то постоянная определяется экспериментально.

Следует отметить, что на основании изучения удельной электропроводимости мы не имеем возможности производить сравнение значений электропроводимости растворов между собой в зависимости от их концентрации. Это становится возможным при введении понятия эквивалентной электропроводности. Кольрауш эквивалентной электропроводностью назвал величину

где - эквивалентная электропроводность, См -экв; -эквивалентная концентрация растворенного вещества, .

Значение электропроводности растворов зависит не только от эквивалентной концентрации и эквивалентной электропроводности, но также и от степени электролитической диссоциации раствора.

Следовательно, в общем случае, когда не все молекулы распались на ионы, для удельной электропроводности получим следующее уравнение:

Здесь степень электролитической диссоциации, т. е. отношение числа диссоциированных молекул электролита к общему числу растворенных молекул. Электролитами называют вещества, водные растворы которых проводят электрический ток (соли, щелочи и кислоты). Степень электролитической диссоциации а зависит как от природы растворенного вещества, так и от концентрации раствора. Числовое значение а увеличивается с разбавлением раствора. В зависимости от степени электролитической диссоциации электролиты делятся на сильные (соляная, серная, азотная кислоты, щелочи, почти все соли) и слабые (например, органические кислоты). Для сильных электролитов, которые в водных растворах при малой концентрации почти полностью распадаются на ионы, значение а принимают равным единице.

Рис. 22-2-1. Зависимость электропроводности водных растворов некоторых веществ от их концентрации при 18° С.

Уравнение (22-2-6) можно представить в следующем виде:

где подвижность соответственно катионов и анионов

Подвижности ионов представляют собой произведение их абсолютной скорости на число Фарадея

Электропроводность водных растворов находится в сложной зависимости от концентрации раствора. На рис. 22-2-1 представлены зависимости удельной электропроводности к водных растворов некоторых веществ от их концентрации. Из этого графика видно, что однозначная зависимость между электропроводностью раствора и концентрацией имеет место лишь в том случае, если измерения электропроводности выполняются в области сравнительно низких концентраций. Концентрации растворенных веществ, которые приходится определять при контроле качества пара, конденсата, питательной и котловой воды, соответствуют начальным участкам приведенных на рис. 22-2-1 кривых, где удельная электропроводность непрерывно увеличивается с ростом концентраций.

При измерении электропроводности конденсата пара и питательной воды, являющихся водными растворами с очень малой концентрацией солей, степень электролитической диссоциации можно

принять равной единице. В этом случае для определения электропроводности можно использовать упрощенное уравнение

Здесь эквивалентная электропроводность при бесконечном разбавлении, которая определяется равенством

где - подвижности соответственно катионов и анионов при бесконечном разбавлении раствора (для .

Значения и температурных коэффициентов подвижностей ионов, соответствующие температуре 18° С, приведены в . Температура при измерении удельной электропроводности водных растворов обычно принимается за нормальную (исходную), для которой приводятся данные по электропроводности.

При измерении электропроводности необходимо учитывать влияние температуры раствора на показания прибора, так как с изменением температуры раствора на 1°С его электропроводность изменяется на Этим определяется важность поддержания постоянства температуры анализируемого раствора при измерении электропроводности или использования эффективно работающей автоматической температурной компенсации, уменьшающей влияние колебаний температуры раствора на показания прибора.

Зависимость электропроводности водных растворов от температуры при малых отклонениях от 18° С выражается формулой

При температуре отличающейся от 18° С на 10-25° С и более, необходимо пользоваться уравнением

где температурный коэффициент электропроводности согласно формуле

Здесь температурные коэффициенты подвижности соответственно катиона и аниона

Температурный коэффициент электропроводности по данным Кольрауша, связан с коэффициентом соотношением

Зависимость электрического сопротивления фиксированного объема раствора между электродами преобразователя от температуры незначительно отличающейся от 18° С, выражается формулой

При температуре отличающейся от 18° С на 10-25° С и более, следует пользоваться уравнением

При контроле водного режима электростанций концентрацию солей обычно выражают в миллиграммах на литр или микрограммах на литр В приведенных выше уравнениях используется эквивалентная концентрация. Пересчет этих концентраций производят по формуле

где эквивалентная концентрация, С-концентрация, - эквивалентная масса ионов растворенного вещества, согласно формуле

Здесь эквивалентная масса соответственно катиона и аниона растворенного вещества (для . Значения эквивалентных масс ионов веществ, встречающихся при измерении электропроводности водных растворов, приведены в .

Выше отмечалось, что градуировка кондуктометров жидкости (солемеров) производится по т. е. на условное содержание в растворе этой соли. Это обусловлено тем, что среди различных солей, содержащихся в конденсате водяного пара и питательной воде парогенераторов, средним значением электропроводности обладает хлористый натрий

Электропроводность водного раствора при малых концентрациях и при исходной температуре С может быть определена с учетом выражений (22-2-8), (22-2-9) и (22-2-16) по уравнению

Подставляя в это выражение значения и получаем:

Градуировку кондуктометров жидкости (солемеров) обычно производят при нормальной температуре . Для пересчета на значение температуры можно воспользоваться формулой (22-2-10)

Подставляя в это уравнение значения получаем:

Электрическое сопротивление фиксированного объема раствора преобразователя при малой его концентрации и при температуре С может быть определено с учетом выражений (22-2-3) и (22-2-20) по формуле

В конденсате пара и питательной воде парогенераторов кроме небольшого количества солей обычно присутствуют растворенные газы - аммиак и углекислый газ и гидразин. Наличие растворенных газов и гидразина изменяет электропроводность конденсата и питательной воды, и показания кондуктометра жидкости (солемера) не соответствуют однозначно условному содержанию солей, т. е. значению сухого остатка, полученного путем выпарки конденсата или питательной воды. Это приводит к необходимости внесения поправок в показания прибора или применения дополнительного устройства для удаления из пробы растворенных газов и гидразина.

Дополнительное устройство в виде дегазатора для удаления из пробы растворенных газов не исключает влияния на показания кондуктометрического анализатора гидразина. Применяемый в настоящее время фильтр, заполненный катионитом марки позволяет исключить влияние на показания прибора аммиака и гидразина.

Электродные кондуктометрические преобразователи. Электродные преобразователи, применяемые для измерения электропроводности растворов, изготовляют для лабораторных исследований различных растворов и для технических измерений. Измерения в лабораторных условиях производят на переменном токе. При этом необходимо отметить, что кондуктометрический метод измерения на переменном токе остается общепринятым в повседневной лабораторной практике. Технические измерения электропроводности растворов с использованием электродных преобразователей производят, как правило, на переменном токе с частотой 50 Гц.

Устройство, размеры, а следовательно, и постоянная электродных преобразователей в существенной степени зависят от измеряемого значения электропроводности раствора. В технических измерениях наиболее распространены преобразователи с цилиндрическими коаксиальными и в меньшей степени - с плоскими электродами. Устройство преобразователей с цилиндрическими коаксиальными электродами схематично показано на рис. 22-2-2. У преобразователя, представленного на рис. 22-2-2, а, наружный цилиндрический электрод является одновременно и корпусом его. Второй преобразователь (рис. 22-2-2, б) имеет также цилиндрические коаксиальные электроды, но они расположены в стальном его корпусе, к которому приварен один электрод. Этот преобразователь

используется в солемерах ЦКТИ с малогабаритными концентраторами . В преобразователь через левый штуцер из концентратора поступает дегазированная и обогащенная проба, имеющая постоянную температуру, близкую к 100° С. Верхний штуцер преобразователя соединяют стальной трубой с паровым пространством малогабаритного концентратора, солемера. Схема устройства преобразователя с плоскими электродами приведена на рис. 22-2-3. Особенность преобразователя, показанного на рис. 22-2-3, заключается в том, что площади его электродов и эффективного сечения раствора, через которое протекает ток, неодинаковы.

Рис. 22-2-2. Устройство преобразователей с цилиндрическими коаксиальными электродами. 1 - зажимы для присоединения проводов; 2 - электроды; 3 - стальной корпус; 4 - изоляторы.

Рис. 22-2-3. Устройство преобразователя с плоскими электродами. 1 - корпус преобразователя; 2 - зажимы для присоединения проводов; 3 - электроды.

Кроме рассмотренных проточных электродные преобразователи выполняют также погружного типа, непосредственно погружаемые в трубопровод с жидкостью, электропроводность (или концентрацию) которой необходимо контролировать. Электроды преобразователей для технических измерений выполняют из нержавеющей стали марки Электроды преобразователей для лабораторных исследований растворов электролитов изготовляют из платины. Для уменьшения поляризации электродов их покрывают слоем платиновой черни. Сосуды этих преобразователей выполняют обычно из стекла. Размеры сосудов выбирают в зависимости от ожидаемого значения электропроводности исследуемого раствора.

На электродах преобразователя, соприкасающихся с раствором, протекают сложные электрохимические процессы. Пространство между электродами заполнено при измерении электропроводности водных растворов средой с высоким значением диэлектрической проницаемости. По этим причинам фиксированный объем раствора между электродами преобразователя при измерении на переменном токе представляет комплексное электрическое сопротивление - комбинацию активных

и емкостных составляющих. Эквивалентная электрическая схема электродного преобразователя с учетом электродных процессов представлена на рис. 22-2-4. К электродным процессам относятся процесс электролиза раствора при прохождении через него электрического тока и процесс образования двойного электрического слоя на границе раздела сред «металл электрода - раствор». Образование двойного электрического слоя происходит за счет воздействия внешнего электрического поля, неравенства химических потенциалов ионов металла электродов и ионов в растворе и специфической адсорбции ионов и полярных молекул. В цепи переменного тока двойной электрический слой эквивалентен электрической емкости Электрическая емкость двойного слоя не зависит от частоты напряжения питания и является функцией концентрации и размера приложенного к электродам потенциала.

Рис. 22-2-4. Эквивалентная электрическая схема электродного преобразователя.

Эквивалентная электрическая схема процесса поляризации представляется в общем случае нелинейным активно-емкостным сопротивлением которое называют фарадеевским импедансом. Одна из моделей эквивалентной схемы определяется выражением

где постоянная, Ом - угловая скорость, рад/с При осуществлении технических измерений стремятся создать такую конструкцию электродного преобразователя, чтобы его полное сопротивление определялось активным сопротивлением фиксированного объема раствора между электродами а влияние электрохимических процессов и обусловленных этими процессами реактивных составляющих электрического сопротивления было бы пренебрежимо мало. Если эти условия выполнены с требуемым приближением, то электрическое сопротивление фиксированного объема раствора между электродами преобразователя определяется согласно выражению (22-2-3) следующей формулой:

Рис. 22-2-5. Упрощенная эквивалентная электрическая схема электродного преобразователя.

Рассмотрим упрощенную эквивалентную электрическую схему электродного преобразователя, которая не учитывает эффекта электролиза. В этом случае полное сопротивление преобразователя будет определяться, как это следует из схемы, показанной на рис. 22-2-5, емкостями двойного слоя на электродах активным электрическим сопротивлением раствора между электродами и емкостью шунтирующей это сопротивление. Емкость может быть названа «конструктивной». Следует отметить, что вода обладает большим по сравнению с другими жидкостями значением относительной диэлектрической проницаемости (для конденсата при что приводит к необходимости учета емкости между электродами.

Используя известное соотношение, которое определяет модуль емкостного сопротивления можно провести качественный анализ влияния емкостных составляющих и частоты на модуль полного сопротивления преобразователя.

При допущении, что активное сопротивление не зависит от частоты напряжения на электродах, легко заметить, что с возрастанием со относительное влияние емкости двойного слоя на модуль полного сопротивления уменьшается, а «конструктивной» емкости увеличивается. Можно показать, что относительное влияние емкости практически не зависит от формы электродов, их взаимного

расположения и расстояния между ними. Действительно, конструктивные изменения влияют практически в равной степени на активное сопротивление преобразователя и на значение емкости Степень же влияния емкости двойного слоя можно изменять конструктивными приемами. При увеличении площади электродов преобразователя возрастает емкость двойного слоя, а уменьшение площади эффективного сечения раствора, через который проходит ток, приводит к возрастанию активного сопротивления раствора. Относительное влияние емкости двойного слоя снижается по сравнению с преобразователем, у которого площадь электродов и эффективного сечения раствора одинаковы.

Для уменьшения влияния на точность измерения электропроводности растворов поляризации электродов применяют четырехэлектродные преобразователи, например, в кондуктометрических анализаторах для чистых водных растворов применяют преобразователи типов с диапазоном измерений . Два электрода этого преобразователя являются токовыми, питаемыми напряжением переменного тока через большое ограничивающее сопротивление, а два других, расположенных между ними, - потенциальными. В этом случае напряжение, измеряемое на потенциальных электродах, однозначно определяет концентрацию контролируемого раствора и не зависит от частичной поляризации токовых электродов.

Рис. 22-2-6. Принципиальная схема электродного преобразователя с температурной компенсацией.

Способы температурной компенсации и типовые измерительные схемы кондуктометрических анализаторов. Температурная компенсация осуществляется с помощью дополнительных элементов в цепи электродного преобразователя или в измерительной схеме кондуктометра жидкости, уменьшающих влияние отклонения температуры раствора от 20° С на показания прибора. Автоматическая температурная компенсация не исключает полностью влияния температуры раствора на показания прибора, что представляет большие трудности, но значительно его уменьшает.

Из числа применяемых способов автоматической температурной компенсации в кондуктометрах жидкости наиболее часто используется электродный преобразователь с температурной компенсацией, схема которого показана на рис. 22-2-6. Схема температурной компенсации электродного преобразователя образована параллельно и последовательно включенными с сопротивлением раствора резисторами Сопротивление раствора с резистором обладает отрицательным, а последовательно включенный резистор положительным температурным коэффициентом электрического сопротивления. Резистор изготовляют из манганиновой проволоки, а резистор из медной проволоки. Для изготовления резистора иногда применяют ннкелевую или платиновую проволоку. Резистор выполняемый аналогично с чувствительным элементом термометра сопротивления, помещают во внутренний

электрод преобразователя (рис. 22-2-2, а). Резистор включенный параллельно с сопротивлением раствора линеаризует зависимость а вместе с тем и уменьшает температурный коэффициент приведенного сопротивления Это создает более благоприятные условия для использования компенсирующего резистора

Рис. 22-2-7. Зависимость полного сопротивления цепи преобразователя от концентрации С для температур 18 и 35° С.

Расчет параметров схемы температурной компенсации обычно производится из условия полной температурной компенсации для двух заданных концентраций и определенных значений температур выбираемых с учетом возможных отклонений температуры раствора от этом случае измерения концентрации (электропроводности) необходимо производить в интервале от до так как погрешность при изменении температуры раствора за границами этого интервала может быть больше, чем внутри него (рис. 22-2-7).

Полное сопротивление цепи преобразователя относительно зажимов А к В (см. рис. 22-2-6) при концентрации раствора С и температуре его определяется выражением

Здесь, а также в последующих уравнениях, индексами указано, к какой концентрации раствора и температуре относятся рассматриваемые величины (сопротивление электрическая проводимость удельная электропроводность ). Условие полной температурной компенсации сводится к равенствам

В последних двух выражениях температурный коэффициент сопротивления меди, соответствующий 0° С При расчете параметров схемы температурной компенсации принимают для измерения электропроводности (солесодержания) водных растворов при малых концентрациях значения величин являются четвертым плечом моста); асинхронный реверсивный двигатель; синхронный двигатель. Резисторы выполнены из манганиновой проволоки. Резистор служит для установления необходимого диапазона изменения сопротивления при измерении электропроводности раствора от начального до конечного значения шкалы, что позволяет использовать без изменений реохорда и усилителя серийно выпускаемые автоматические уравновешенные мосты КСМ2.

Рис. 22-2-8. Принципиальная схема кондуктометра жидкости с использованием электродного преобразователя (рис. 22-2-2, 6).

Рассмотренная мостовая измерительная схема вторичного прибора кондуктометра жидкости может быть использована также для измерения электропроводности водных растворов электродным преобразователем с температурной компенсацией (см. рис. 22-2-6), если его присоединить к зажимам вместо преобразователя Кондуктометры жидкости с таким электродным преобразователем, изготовляемые Тулэнерго, применяют на ТЭС для измерения электропроводности химически обессоленной воды. В этих кондуктометрах жидкости используются электродные преобразователи с температурной компенсацией от 15 до 35° С проточного и погружного типов. Приборы имеют диапазон измерения удельной электропроводности от 0,04 до при 20° С.

Рассмотрим способ температурной компенсации с помощью терморезистора, включаемого в измерительную схему автоматического

уравновешенного моста кондуктометра жидкости (рис. 22-2-9). Здесь электродный преобразователь ЭП включен в измерительную мостовую схему вторичного прибора, так же как на рис. 22-2-8. При этом приведенное сопротивление преобразователя и терморезистор с шунтом включенным в смежные плечи моста, обладают отрицательным температурным коэффициентом сопротивления. Следует отметить, что для терморезистора зависимость так же как и для нелинейна

Рис. 22-2-9. Принципиальная схема кондуктометра жидкости с использованием терморезистора для температурной компенсации.

При измерении электропроводности терморезистор имеет ту же температуру, что и анализируемый раствор, так как он обычно монтируется внутри корпуса преобразователя. Точность температурной компенсации будет определяться степенью согласованности температурных коэффициентов терморезистора с шунтом и приведенного сопротивления преобразователя

Рассмотренная температурная компенсация с помощью терморезистора, включенного в измерительную мостовую схему, используется в применяемых кондуктометрических анализаторах жидкости.

Температурная компенсация может быть также осуществлена с помощью дополнительного электродного преобразователя, который заполнен водным раствором, имеющим температурный коэффициент сопротивления, близкий температурному коэффициенту анализируемого раствора . В этом случае рабочий и компенсирующий преобразователи включают в смежные плечи измерительной схемы моста. При этом компенсирующий преобразователь омывается снаружи анализируемым раствором и имеет с ним одинаковую температуру. Этот способ температурной компенсации не получил широкого распространения, так как свойства раствора в компенсационном преобразователе со временем изменяются.

Автоматические уравновешенные мосты, предназначенные для работы в комплекте с электродными преобразователями, могут быть снабжены дополнительным устройством для сигнализации (регулирования) предельных значений электропроводности водных растворов электролитов.

Кроме рассмотренных анализаторов жидкости с электродными преобразователями выпускаются кондуктометр ический анализатор

АК класса точности 5, разработанный СКБ АП, с выходным сигналом постоянного тока Этот кондуктометрический анализатор, снабжаемый фильтром, заполненным катионитом марки предназначен для измерения удельной электропроводности водных растворов при температуре 30-40° С и наличии в них минеральных примесей, аммиака и гидразина. В качестве вторичного прибора применяется автоматический миллиамперметр КСУ2 с диапазонами измерений

Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение , модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

сименс на метр пикосименс на метр мо на метр мо на сантиметр абмо на метр абмо на сантиметр статмо на метр статмо на сантиметр сименс на сантиметр миллисименс на метр миллисименс на сантиметр микросименс на метр микросименс на сантиметр условная единица электропроводности условный коэффициент электропроводности миллионных долей, коэф. пересчета 700 миллионных долей, коэф. пересчета 500 миллионных долей, коэф. пересчета 640 TDS, миллионных долей, коэф. пересчета 640 TDS, миллионных долей, коэф. пересчета 550 TDS, миллионных долей, коэф. пересчета 500 TDS, миллионных долей, коэф. пересчета 700

Подробнее об удельной электрической проводимости

Введение и определения

Удельная электрическая проводимость (или удельная электропроводность) является мерой способности вещества проводить электрический ток или перемещать электрические заряды в нем. Это отношение плотности тока к напряженности электрического поля. Если рассмотреть куб из проводящего материала со стороной 1 метр, то удельная проводимость будет равна электрической проводимости, измеренной между двумя противоположными сторонами этого куба.

Удельная проводимость связана с проводимостью следующей формулой:

G = σ(A/l)

где G - электрическая проводимость, σ - удельная электрическая проводимость, А - поперечное сечение проводника, перпендикулярное направлению электрического тока и l - длина проводника. Эту формулу можно использовать с любым проводником в форме цилиндра или призмы. Отметим, что эту формулу можно использовать и для прямоугольного параллелепипеда, потому что он является частным случаем призмы, основанием которой является прямоугольник. Напомним, что удельная электрическая проводимость - величина, обратная удельному электрическому сопротивлению.

Людям, далеким от физики и техники, бывает сложно понять разницу между проводимостью проводника и удельной проводимостью вещества. Между тем, конечно, это разные физические величины. Проводимость - это свойство данного проводника или устройства (например, резистора или гальванической ванны), в то время как удельная проводимость - это неотъемлемое свойство материала, из которого изготовлены этот проводник или устройство. Например, удельная проводимость меди всегда одинаковая, независимо от того как изменяется форма и размеры предмета из меди. В то же время, проводимость медного провода зависит от его длины, диаметра, массы, формы и некоторых других факторов. Конечно, похожие объекты из материалов с более высокой удельной проводимостью имеют более высокую проводимость (хотя и не всегда).


В Международной системе единиц (СИ) единицей удельной электрической проводимости является сименс на метр (См/м) . Входящая в нее единица проводимости названа в честь немецкого ученого, изобретателя, предпринимателя Вернера фон Сименса (1816–1892 гг.). Основанная им в 1847 г. компания Siemens AG (Сименс) является одной из самых больших компаний, выпускающих электротехническое, электронное, энергетическое, транспортное и медицинское оборудование.


Диапазон удельных электрических проводимостей очень широк: от материалов, обладающих высоким удельным сопротивлением, таких как стекло (которое, между прочим, хорошо проводит электрический ток, если его нагреть докрасна) или полиметилметакрилат (органическое стекло) до очень хороших проводников, таких как серебро, медь или золото. Удельная электрическая проводимость определяется количеством зарядов (электронов и ионов), скоростью их движения и количеством энергии, которое они могут переносить. Средними значениями удельной проводимости обладают водные растворы различных веществ, которые используются, например, в гальванических ваннах. Другим примером электролитов со средними значениями удельной проводимости является внутренняя среда организма (кровь, плазма, лимфа и другие жидкости).

Проводимость металлов, полупроводников и диэлектриков подробно обсуждается в следующих статьях Конвертера физических величин сайт: , и Электрическая проводимость. В этой статье мы обсудим подробнее удельную проводимость электролитов, а также методы и простое оборудование для ее измерения.

Удельная электрическая проводимость электролитов и ее измерение


Удельная проводимость водных растворов, в которых электрический ток возникает в результате движения заряженных ионов, определяется количеством носителей заряда (концентрацией вещества в растворе), скоростью их движения (подвижность ионов зависит от температуры) и зарядом, которые они несут (определяемой валентностью ионов). Поэтому в большинстве водных растворов повышение концентрации приводит к увеличению числа ионов и, следовательно, к увеличению удельной проводимости. Однако после достижения определенного максимума удельная проводимость раствора может начать уменьшаться при дальнейшем увеличении концентрации раствора. Поэтому растворы с двумя различными концентрациями одной и той же соли могут иметь одинаковую удельную проводимость.

Температура также влияет на проводимость, так как при повышении температуры ионы движутся быстрее, что приводит к увеличению удельной проводимости. Чистая вода - плохой проводник электричества. Обычная дистиллированная вода, в которой содержится в равновесном состоянии углекислый газ из воздуха и общая минерализация менее 10 мг/л, имеет удельную электрическую проводимость около 20 мСм/см. Удельная проводимость различных растворов приведена ниже в таблице.



Для определения удельной проводимости раствора используется измеритель сопротивления (омметр) или проводимости. Это практически одинаковые устройства, отличающиеся только шкалой. Оба измеряют падение напряжения на участке цепи, по которому протекает электрический ток от батареи прибора. Измеренное значение проводимости вручную или автоматически пересчитывается в удельную проводимость. Это осуществляется с учетом физических характеристик измерительного устройства или датчика. Датчики удельной проводимости устроены просто: это пара (или две пары) электродов, погруженных в электролит. Датчики для измерения удельной проводимости характеризуются постоянной датчика удельной проводимости , которая в простейшем случае определяется как отношение расстояния между электродами D к площади (электрода), перпендикулярной течению тока А

Эта формула хорошо работает, если площадь электродов значительно больше расстояния между ними, так как в этом случае большая часть электрического тока протекает между электродами. Пример: для 1 кубического сантиметра жидкости K = D/A = 1 см/1 см² = 1 см⁻¹. Отметим, что датчики удельной проводимости с маленькими электродами, раздвинутыми на относительно большое расстояние, характеризуются значениями постоянной датчика 1.0 cm⁻¹ и выше. В то же время, датчики с относительно большими электродами, расположенными близко друг к другу, имеют постоянную 0,1 cm⁻¹ или менее. Постоянная датчика для измерения удельной электрической проводимости различных устройств находится в пределах от 0,01 до 100 cm⁻¹.

Теоретическая постоянная датчика: слева - K = 0,01 см⁻¹ , справа - K = 1 см⁻¹

Для получения удельной проводимости из измеренной проводимости используется следующая формула:

σ = K ∙ G

σ - удельная проводимость раствора в См/см;

K - постоянная датчика в см⁻¹;

G - проводимость датчика в сименсах.

Постоянную датчика обычно не рассчитывают по его геометрическим размерам, а измеряют в конкретном измерительном устройстве или в конкретной измерительной установке с использованием раствора с известной проводимостью. Эта измеренная величина и вводится в прибор для измерения удельной проводимости, который автоматически рассчитывает удельную проводимость по измеренным значениям проводимости или сопротивления раствора. В связи с тем, что удельная проводимость зависит от температуры раствора, устройства для ее измерения часто содержат датчик температуры, который измеряет температуру и обеспечивает автоматическую температурную компенсацию измерений, то есть, приведение результатов к стандартной температуре 25°C.

Самый простой способ измерения проводимости - приложить напряжение к двум плоским электродам, погруженным в раствор, и измерить протекающий ток. Этот метод называется потенциометрическим. По закону Ома, проводимость G является отношением тока I к напряжению U :

Однако не все так просто, как описано выше - при измерении проводимости имеется много проблем. Если используется постоянный ток , ионы собираются у поверхностей электродов. Также у поверхностей электродов может возникнуть химическая реакция . Это приводит к увеличению поляризационного сопротивления на поверхностях электродов, что, в свою очередь, приводит к получению ошибочных результатов. Если попробовать измерить обычным тестером сопротивление, например, раствора хлористого натрия, будет хорошо видно, как показания на дисплее цифрового прибора довольно быстро изменяются в сторону увеличения сопротивления. Чтобы исключить влияние поляризации, часто используют конструкцию датчика из четырех электродов.

Поляризацию также можно предотвратить или, во всяком случае, уменьшить, если использовать при измерении вместо постоянного, да еще и подстраивать частоту в зависимости от проводимости. Низкие частоты используются для измерения низкой удельной проводимости, при которой влияние поляризации невелико. Более высокие частоты используются для измерения высоких проводимостей. Обычно частота подстраивается в процессе измерения автоматически, с учетом полученных значений проводимости раствора. Современные цифровые двухэлектродные измерители проводимости обычно используют переменный ток сложной формы и температурную компенсацию. Они откалиброваны на заводе-изготовителе, однако в процессе эксплуатации часто требуется повторная калибровка, так как постоянная измерительной ячейки (датчика) изменяется со временем. Например, она может измениться при загрязнении датчики или при физико-химических изменениях электродов.

В традиционном двухэлектродном измерителе удельной проводимости (именно такой мы будем использовать в нашем эксперименте) между двумя электродами приложено переменное напряжение и измеряется протекающий между электродами ток. Этот простой метод имеет один недостаток - измеряется не только сопротивление раствора, но и сопротивление, вызванное поляризацией электродов. Для сведения влияния поляризации к минимуму используют четырехэлектродную конструкцию датчика, а также покрытие электродов платиновой чернью.

Общая минерализация

Устройства для измерения удельной электрической проводимости часто используют для определения общей минерализации или содержания твёрдых веществ (англ. total dissolved solids, TDS). Это мера общего количества органических и неорганических веществ , содержащихся в жидкости в различных формах: ионизированной, молекулярной (растворенной), коллоидной и в виде суспензии (нерастворенной). К растворенным веществам относятся любые неорганические соли. Главным образом, это хлориды, бикарбонаты и сульфаты кальция, калия, магния, натрия, а также некоторые органические вещества, растворенные в воде. Чтобы относиться к общей минерализации, вещества должны быть или растворенными, или в форме очень мелких частиц, которые проходят сквозь фильтры с диаметром пор менее 2 микрометров. Вещества, которые постоянно находятся в растворе во взвешенном состоянии, но не могут пройти сквозь такой фильтр, называется взвешенными твердыми веществами (англ. total suspended solids, TSS). Общее количество взвешенных веществ обычно измеряется для определения качества воды.


Существует два метода измерения содержания твердых веществ: гравиметрический анализ , являющийся наиболее точным методом, и измерение удельной проводимости . Первый метод - самый точный, но требует больших затрат времени и наличия лабораторного оборудования, так как воду нужно выпарить до получения сухого остатка. Обычно это производится при температуре 180°C в лабораторных условиях. После полного испарения остаток взвешивается на точных весах.

Второй метод не такой точный, как гравиметрический анализ. Однако он очень удобен, широко распространен и является наиболее быстрым методом , так как представляет собой простое измерение проводимости и температуры, выполняемое за несколько секунд недорогим измерительным прибором. Метод измерения удельной электропроводности можно использовать в связи с тем, что удельная проводимость воды прямо зависит от количества растворенных в ней ионизированных веществ. Данный метод особенно удобен для контроля качества питьевой воды или оценки общего количества ионов в растворе.

Измеренная проводимость зависит от температуры раствора. То есть, чем выше температура, тем выше проводимость, так как ионы в растворе при повышении температуры движутся быстрее. Для получения измерений, независимых от температуры, используется концепция стандартной (опорной) температуры, к которой приводятся результаты измерения. Опорная температура позволяет сравнить результаты, полученные при разных температурах . Таким образом, измеритель удельной проводимости может измерять реальную проводимость, а затем использовать корректирующую функцию, которая автоматически приведет результат к опорной температуре 20 или 25°C. Если необходима очень высокая точность, образец можно поместить в термостат, затем откалибровать измерительный прибор при той же температуре, которая будет использоваться при измерениях.

Большинство современных измерителей удельной проводимости снабжены встроенным датчиком температуры, который используется как для температурной коррекции, так и для измерения температуры. Самые совершенные приборы способны измерять и отображать измеренные значения в единицах удельной проводимости, удельного сопротивления, солености, общей минерализации и концентрации. Однако еще раз отметим, что все эти приборы измеряют только проводимость (сопротивление) и температуру. Все физические величины, которые показывает дисплей, рассчитываются прибором с учетом измеренной температуры, которая используется для автоматической температурной компенсации и приведения измеренных значений к стандартной температуре.

Эксперимент: измерение общей минерализации и проводимости

В заключение мы выполним несколько экспериментов по измерению удельной проводимости с помощью недорогого измерителя общей минерализации (называемого также солемером, салинометром или кондуктомером) TDS-3. Цена «безымянного» прибора TDS-3 на eBay с учетом доставки на момент написания статьи менее US$3.00. Точно такой же прибор, но с названием изготовителя стоит уже в 10 раз дороже. Но это для любителей платить за брэнд, хотя очень высока вероятность того, что оба прибора будут выпущены на одном и том же заводе. TDS-3 осуществляет температурную компенсацию и для этого снабжен датчиком температуры, расположенным рядом с электродами. Поэтому его можно использовать и в качестве термометра. Следует еще раз отметить, что прибор реально измеряет не саму минерализацию, а сопротивление между двумя проволочными электродами и температуру раствора. Все остальное он автоматически рассчитывает с использованием калибровочных коэффициентов.


Измеритель общей минерализации поможет определить содержание твердых веществ, например, при контроле качества питьевой воды или определения солености воды в аквариуме или в пресноводном пруде. Его можно также использовать для контроля качества воды в системах фильтрации и очистки воды, чтобы узнать когда пришло время заменить фильтр или мембрану. Прибор откалиброван на заводе-изготовителе с помощью раствора хлорида натрия NaCl с концентрацией 342 ppm (частей на миллион или мг/л). Диапазон измерения прибора - 0–9990 ppm или мг/л. PPM - миллионная доля, безразмерная единица измерения относительных величин, равная 1 10⁻⁶ от базового показателя. Например, массовая концентрация 5 мг/кг = 5 мг в 1 000 000 мг = 5 частей на миллион или миллионных долей. Точно так же, как процент является одной сотой долей, миллионная доля является одной миллионной долей. Проценты и миллионные доли по смыслу очень похожи. Миллионные доли, в отличие от процентов, удобны для указания концентрации очень слабых растворов.

Прибор измеряет электрическую проводимость между двумя электродами (то есть величину, обратную сопротивлению), затем пересчитывает результат в удельную электрическую проводимость (в англоязычной литературе часто используют сокращение EC) по приведенной выше формуле проводимости с учетом постоянной датчика K, затем выполняет еще один пересчет, умножая полученную удельную проводимость на коэффициент пересчета 500. В результате получается значение общей минерализации в миллионных долях (ppm). Подробнее об этом - ниже.


Данный прибор для измерения общей минерализации нельзя использовать для проверки качества воды с высоким содержанием солей. Примерами веществ с высоким содержанием солей являются некоторые пищевые продукты (обычный суп с нормальным содержанием соли 10 г/л) и морская вода. Максимальная концентрация хлорида натрия, которую может измерить этот прибор - 9990 ppm или около 10 г/л. Это обычная концентрация соли в пищевых продуктах. Данным прибором также нельзя измерить соленость морской воды, так как она обычно равна 35 г/л или 35000 ppm, что намного выше, чем прибор способен измерить. При попытке измерить такую высокую концентрацию прибор выведет сообщение об ошибке Err.

Солемер TDS-3 измеряет удельную проводимость и для калибровки и пересчета в концентрацию использует так называемую «шкалу 500» (или «шкалу NaCl»). Это означает, что для получения концентрации в миллионных долях значение удельной проводимости в мСм/см умножается на 500. То есть, например, 1,0 мСм/см умножается на 500 и получается 500 ppm. В разных отраслях промышленности используют разные шкалы. Например, в гидропонике используют три шкалы: 500, 640 и 700. Разница между ними только в использовании. Шкала 700 основана на измерении концентрации хлорида калия в растворе и пересчет удельной проводимости в концентрацию выполняется так:

1,0 мСм/см x 700 дает 700 ppm

Шкала 640 использует коэффициент преобразования 640 для преобразования мСм в ppm:

1,0 мСм/см x 640 дает 640 ppm

В нашем эксперименте мы вначале измерим общую минерализацию дистиллированной воды. Солемер показывает 0 ppm. Мультиметр показывает сопротивление 1,21 МОм.


Для эксперимента приготовим раствор хлорида натрия NaCl с концентрацией 1000 ppm и измерим концентрацию с помощью TDS-3. Для приготовления 100 мл раствора нам нужно растворить 100 мг хлорида натрия и долить дистиллированной воды до 100 мл. Взвесим 100 мг хлорида натрия и поместим его в мерный цилиндр, добавим немного дистиллированной воды и размешаем до полного растворения соли. Затем дольем воду до метки 100 мл и еще раз как следует размешаем.

Для экспериментального определения проводимости мы использовали два электрода, изготовленные из того же материала и с теми же размерами, что и электроды TDS-3. Измеренное сопротивление составило 2,5 КОм.

Теперь, когда нам известно сопротивление и концентрация хлорида натрия в миллионных долях, мы можем приблизительно рассчитать постоянную измерительной ячейки солемера TDS-3 по приведенной выше формуле:

K = σ/G = 2 мСм/см x 2,5 кОм = 5 см⁻¹

Это значение 5 см⁻¹ близко к расчетной величине постоянной измерительной ячейки TDS-3 с указанными ниже размерами электродов (см. рисунок).

  • D = 0,5 см - расстояние между электродами;
  • W = 0,14 см - ширина электродов
  • L = 1,1 см - длина электродов

Постоянная датчика TDS-3 равна K = D/A = 0,5/0,14x1,1 = 3,25 cm⁻¹. Это не сильно отличается от полученного выше значения. Напомним, что приведенная выше формула позволяет лишь приблизительно оценить постоянную датчика.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Из курса физики Вы помните, что электрическое сопротивление любого проводника может быть рассчитано по формуле:

где R - сопротивление в Ом;

l - длина проводника, см;

S - площадь поперечного сечения, см 2 ;

r - удельное сопротивление , т.е. сопротивление проводника длиной 1 см с площадью поперечного сечения 1 см 2 .

В электрохимии принято пользоваться величинами, обратными указанным:

Величина L называется электрической проводимостью и измеряется в Сименсах (См) См = Ом -1 .

Величина À называется удельной электрической проводимостью. Нетрудно вывести, что величина À измеряется в См×см -1 . На рис.3.1. представлена кондуктометрическая ячейка, применяемая для измерения электрической проводимости. Она представляет собой сосуд 1, без дна, в который вставлены два платиновых электрода 2, помещаемые в исследуемый раствор 3.

Величину К определяют экспериментально. Для этого необходимо измерить электрическую проводимость L раствора, для которого À известна. Обычно для этого используют растворы хлорида калия известной концентрации (0,1; 0,05; 0,01 моль/дм 3), величины À которых имеются в таблицах.

Из уравнения (3.5.) следует, что

удельная проводимость - это электрическая проводимость раствора, помещенного между двумя электродами площадью 1 см 2 , находящимися на расстоянии 1 см.

больше ионов-носителей электричества. В разбавленных растворах как сильных так и слабых электролитов увеличение концентрации приводит к повышению проводимости, что связано с увеличением количества ионов. В области высоких концентраций наблюдается уменьшение À. Для сильных электролитов это связано с увеличением вязкости растворов и усилением электростатического взаимодействия между ионами. Для слабых электролитов указанный эффект связан с уменьшением степени диссоциации и, следовательно, уменьшением количества ионов.

При повышении температуры удельная проводимость электролитов увеличивается:

À 2 = À 1 [ 1 + a(T 2 - T 1)] (3.7.)

В этом уравнении À 1 и À 2 – удельная проводимость при температурах Т 1 и Т 2 , а a – температурный коэффициент проводимости. Например, для солей a » 0,02. Это означает, что повышение температуры на один градус приводит к увеличению проводимости приблизительно на 2%. Связано это с тем, что при повышении температуры уменьшается степень гидратации и вязкость растворов.

Следует отметить, что в отличие от электролитов, электричес-кая проводимость металлов при повышении температуры уменьшается.

Молярная электрическая проводимость

Молярная проводимость l связана с удельной проводимостью формулой:

l = À×1000/с (3.8.)

В этом выражении с - молярная концентрация раствора, моль×дм -3 . Молярная проводимость выражена в См×см 2 ×моль -1 . Итак,

молярная проводимость - это проводимость раствора, содержащего 1 моль вещества при расстоянии между электродами, равном 1 см.

Молярная электрическая проводимость как сильных так и слабых электролитов с увеличением концентрации понижается. Характер зависимости l от с для сильных и слабых электролитов различен, т.к. влияние концентрации обусловлено различными причинами.

Сильные электролиты . При небольших концентрациях зависимость молярной проводимости от концентрации выражается эмпирическим уравнением Кольрауша:

l = l 0 –bÖс (3.9.)

где b – определяемая опытным путем постоянная,

а l 0 – молярная электрическая проводимость при бесконечном разбавлении или предельная молярная проводимость .

Таким образом,

liml C ® 0 = l 0 (3.10.)

Приготовить раствор, концентрация которого равна нулю, невозможно. Величину l 0 для сильных электролитов можно определить графически. Из уравнения (3.9.) следует, что график зависимости l = f(Öc) для сильных электролитов представляет собой прямую линию (рис.3.3.,линия 1).

Если приготовить ряд растворов различной концентрации, измерить их проводимость L,рассчитать и построить график l = f(Öс), то экстраполируя полученную прямую на ось ординат (с = 0), можно определить l 0 . Если учесть, что сильные электролиты, независимо от концентрации раствора полностью диссоциированы, то приходим к выводу, что количество ионов, образуемых из 1 моль вещества, всегда одно и то же. Значит, от концентрации раствора зависит скорость движения ионов, с увеличением концентрации усиливается торможение ионов . Это явление, связано с образованием вокруг каждого иона в растворе ионной атмосферы , состоящей преимущественно из ионов противоположного знака. С увеличением концентрации также увеличивается вязкость раствора. Существуют и другие причины замедления движения ионов в электрическом поле, на которых мы останавливаться не будем.

Если экспериментально определить величину l для раствора данной концентрации и графически найти l 0 можно рассчитать величину коэффициента электропроводности f :

f = l / l 0 (3.11.)

Коэффициент f характеризует степень торможения ионов и при разбавлении раствора стремится к единице.

Слабые электролиты . Молярная проводимость слабых электролитов значительно меньше, чем для растворов сильных электролитов (рис.3.3, линия 2). Это связано с тем, что даже при низких концентрациях степень диссоциации слабых электролитов мала. Повышение молярной проводимости слабых электролитов при разбавлении растворов связано с увеличением степени диссоциации в соответствии с законом разбавления Оствальда. С.Аррениус высказал предположение, что молярная проводимость слабого электролита связана с его степенью диссоциации выражением:

a = l / l 0 (3.12.)

Таким образом, степень диссоциации слабого электролита можно рассчитать, если известна его предельная молярная проводимость l 0 . Однако определить l 0 графически путем экстраполяции графика l= f(Öс) нельзя, т.к. кривая (рис.3.3., линия 2) при уменьшении концентрации асимптотически приближается к оси ординат.

Величину l 0 можно определить с помощью закона независимости движения ионов Кольрауша :

Молярная электрическая проводимость электролита при бесконечном разбавлении раствора равна сумме предельных подвижностей катионов и анионов.

l 0 =l 0,+ + l 0,– (3.13.)

Подвижности катиона и аниона пропорциональны абсолютным скоростям движения ионов (см.табл. 3.1.).

l 0,+ = F×U + ; l 0,– = F×U – (3.14.)

В этих формулах F - единица количества электричества, называемая Фарадеем, равная 96494 Кулонов (Кл). В табл.3.2. приведены предельные подвижности некоторых ионов.

Следует отметить, что закон независимости движения ионов справедлив как для слабых, так и для сильных электролитов.

Таблица 3.2.

Предельные подвижности ионов (см 2 ×См×моль -1) при 25 0 С

Катион l 0,+ Анион l 0,–
Н + К + Na + Li + Ag + Ba 2+ Ca 2+ Mg 2+ 349,8 73,5 50,1 38,7 61,9 127,2 119,0 106,1 ОН - I - Br - Cl - NO 3 - CH 3 COO - SO 4 2- 76,8 78,4 76,3 71,4 40,9 160,0

Применение измерений проводимости

Метод исследования основанный на измерении электрической проводимости, называется кондуктометрией . Этот метод широко используется в лабораторной практике. Прибор для измерения электрической проводимости называется кондуктометром . В частности, кондуктометрический метод позволяет определять константы диссоциации слабых электролитов.

Пример. Определение константы диссоциации уксусной кислоты.

а)Для нахождения постоянной кондуктометрической ячейки приготовили растворы хлорида калия с молярными концентрациями 0,1 и 0,02 моль×дм -3 и измерили их проводимость.Она оказалась равной соответственно L 1 = 0,307 См и L 2 = 0,0645 См. По таблице находим значения удельной проводимости растворов хлорида калия указанных концентраций:

À 1 = 1,29×10 -1 См×см -1 ; À 2 = 2,58×10 -2 См×см -1

По уравнению 3.6. рассчитываем постоянную ячейки:

К 1 = À 1 /L 1 = 0,42 см -1

К 2 = À 2 /L 2 = 0,40 см -1

Среднее значение К = 0,41 см -1

б)Приготовили два раствора уксусной кислоты с концентрациями c 1 =0,02моль×дм -3 и c 2 = 1×10 -3 моль×дм -3 . С помощью кондуктометра измерили их электрическую проводимость:

L 1 = 5,8×10 -4 См; L 2 = 1,3×10 -4 См.

в) Рассчитываем удельную проводимость:

À 1 = L 1 ×K = 5,8×10 -4 ×0,41 = 2,378×10 -4 Cм×см -1

À 2 = L 2 ×К = 1,2×10 -4 ×0,41 = 0,492×10 -4 См×см -1

г) По формуле (3.8.) находим молярную электрическую проводимость l 1 =11,89См×см 2 ×моль -1 ; l 2 = 49,2 См×см 2 ×моль -1

д) Находим, пользуясь табл.3.2. величину предельной молярной прово-димости уксусной кислоты: l 0 = 349,8 +40,9 = 390,7 См×см 2 ×моль -1 .

е) Наконец, рассчитываем для каждого раствора степень диссоциации (уравнение 3.12.) и константу диссоциации

a 1 = 3,04×10 -2 ; a 2 = 1,26×10 -1

К 1 = 1,91×10 -5 ; К 2 = 1,82×10 -5

Среднее значение К = 1,86×10 -5

Техническая реализация этой задачи позволит человечеству не платить непомерную дань за использование самого удобного вида энергии - в виде тепловых потерь при генерации, трансформации и передаче электроэнергии. Косвенным эффектом освоения сверхпроводимости стало бы и существенное улучшение экологии окружающей среды из-за снижения уровня выбросов вредных продуктов горения угля, мазута и газа тепловыми электростанциями, и прекращение бесполезного подогрева атмосферы Земли, и сокращение выбросов парниковых газов.

Проводимость, наравне с сопротивлением, играет большую роль в электротехнике и других технических науках. Её физический смысл интуитивно понятен из ее гидравлического аналога - все понимают, что у широкого шланга сопротивление потоку воды ниже, и, соответственно, он лучше пропускает воду, чем тонкий. Также и с электропроводимостью - материя с более низким сопротивлением лучше проводит электричество.

Единица электропроводности названа в честь известного немецкого инженера, изобретателя, учёного и промышленника - основателя фирмы Siemens - Эрнста Вернера фон Сименса (Werner Ernst von Siemens). Между прочим, именно он предложил ртутную единицу сопротивления, которая несколько отличается от современного ома. Сименс определил единицу сопротивления как сопротивление столба ртути высотой 100 см с поперечным сечением 1 мм² при температуре 0° С.

Физика явлений

твёрдым , жидким или газообразным плазмой

кристаллические и аморфные .

Эти зоны называются валентными зону проводимости запрещенной зоной

Электропроводность металлов

Ещё задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества. Изящный по своей простоте эксперимент, который выполнил немецкий физик Карл Виктор Эдуард Рикке (Carl Viktor Eduard Riecke) в 1901 году, убедительно доказал, что носителями тока в металлах является некая субстанция, на тот момент неизвестная. Он в течение года пропускал электрический ток через своеобразный «сэндвич» из разнородных металлов (медь-алюминий-медь) и, по завершению эксперимента, обнаружил отсутствие смешивания металлов. Позднее, трудами датского учёного Нильса Бора была создана и блестяще подтверждена теория планетарного устройства атома, состоящего из положительного ядра, включающего в себя частицы, которые мы сейчас называем нуклонами - это протоны и нейтроны - и внешних оболочек из отрицательно заряженных электронов. Этой теорией до сих пор пользуются физики, правда, привнеся в неё некоторые коррективы.

Электропроводность собственно полупроводников носит электронный характер и сильно зависит от примесей. Техническое использование этого свойства нашло применение в создании усилительных и ключевых элементов современной электроники. Характерными полупроводниками являются четырёхвалентные германий (Ge) и кремний (Si), образующие кристаллическую структуру из атомов, связанных между собой ковалентными связями из электронных пар внешней оболочки атомов. Привнесение примесей резко меняет проводимость этих полупроводников. Например, при добавлении пятивалентных атомов галлия(Ga) или мышьяка (As), в полупроводнике образуется избыток валентных электронов, которые становятся общим достоянием образца полупроводника, в этом случае говорят о проводимости n-типа. Если к полупроводнику добавляется трёхвалентный индий (In), то образуется недостаток валентных электронов, в этом случае говорят о «дырочной» проводимости р-типа.

Электропроводность полупроводников сильно зависит от приложения внешних факторов, как-то: электрического или магнитного поля, освещения светом различной интенсивности и спектра или воздействия разного рода облучений вплоть до гамма-квантов. Слово «кванты» в английской терминологии не используется. Это свойство легированных полупроводников нашло широкое применение в современных технологиях . Уникальным свойством односторонней проводимости обладает сочетание полупроводников с различными видами проводимости, так называемый p-n переход, ставший основой современной электроники.

катионы и анионы

Электропроводность газов

фотохимическая ионизация ударная ионизация

Электропроводность в биологии

Сверхпроводимость

Если термин «электрическая проводимость» знаком, в основном, специалистам по физике и электротехнике, то о сверхпроводниках, стараниями журналистов, слышал почти каждый. Наряду с освоением термоядерной энергии, создание сверхпроводящих материалов, работающих при нормальных земных значениях температур, является мечтой и философским камнем физики 21-го века.

Техническая реализация этой задачи позволит человечеству не платить непомерную дань за использование самого удобного вида энергии - в виде тепловых потерь при генерации, трансформации и передаче электроэнергии. Косвенным эффектом освоения сверхпроводимости стало бы и существенное улучшение экологии окружающей среды из-за снижения уровня выбросов вредных продуктов горения угля, мазута и газа тепловыми электростанциями, и прекращение бесполезного подогрева атмосферы Земли, и сокращение выбросов парниковых газов.

Помимо этого, внедрение сверхпроводников в различные отрасли промышленности и транспорта, привело бы к новой технической революции, плодами которой могло бы пользоваться всё население Земли. Все электрические машины - генераторы, трансформаторы, двигатели - уменьшились бы в размерах, а мощность их возросла бы; применение электромагнитов на основе сверхпроводимости существенно приблизило бы решение проблемы термоядерного синтеза, а сверхскоростные поезда стали бы реальностью.

Исходя из этого, понятен интерес к проблеме сверхпроводимости со стороны учёных и инженеров всего мира, и уже появляются первые материалы, способные реализовать практическую сверхпроводимость. Главным направлением усилий исследователей стали в последнее время графен и графеноподобные материалы, являющиеся по сути дела двумерными структурами с уникальной проводимостью.

Определение и единицы измерения электрической проводимости

Электрической проводимостью называется способность материала пропускать через себя электрический ток. Электрическая проводимость или, иначе, электропроводность является обратной величиной по отношению к сопротивлению. Обозначается проводимость буквой G.

В системе СИ электропроводность измеряется в сименсах (1 См = 1 Ом⁻¹). В гауссовой системе и в СГСЭ используют статсименс, а СГСМ - абсименс.

Проводимость, наравне с сопротивлением, играет большую роль в электротехнике и других технических науках. Её физический смысл интуитивно понятен из ее гидравлического аналога - все понимают, что у широкого шланга сопротивление потоку воды ниже, и, соответственно, он лучше пропускает воду, чем тонкий. Также и с электропроводимостью - материя с более низким сопротивлением лучше проводит электричество.

Единица электропроводности названа в честь известного немецкого инженера, изобретателя, учёного и промышленника - основателя фирмы Siemens - Эрнста Вернера фон Сименса (Werner Ernst von Siemens). Между прочим, именно он предложил ртутную единицу сопротивления, которая несколько отличается от современного ома. Сименс определил единицу сопротивления как сопротивление столба ртути высотой 100 см с поперечным сечением 1 мм² при температуре 0° С.

Физика явлений

Сама по себе электропроводность какого-либо материала определяется, прежде всего, его физическим состоянием: вещество может быть твёрдым , жидким или газообразным . Существует также четвёртое состояние вещества, называемое плазмой , из которого состоят верхние слои нашего Солнца.

При рассмотрении явлений электропроводности в твёрдых телах не обойтись без современных представлений физики твёрдого тела и зонной теории проводимости. С точки зрения структуры твёрдые тела подразделяются на кристаллические и аморфные .

Кристаллические вещества имеют упорядоченную геометрическую структуру; атомы или молекулы вещества образуют своеобразную объёмную или плоскую решётку; к таким материалам относятся металлы, их сплавы и полупроводники. Аморфные вещества кристаллической решётки не имеют.

Из валентных электронов атомов внутри кристалла образуются ассоциации электронов, не принадлежащих конкретному атому. Точно так же, как состояния электронов в изолированном атоме ограничены дискретными энергетическими уровнями, состояния электронов в твердом теле ограничены дискретными энергетическими зонами . Эти зоны называются валентными или заполненными зонами. Кроме валентной зоны, кристалл имеет зону проводимости , которая расположена, как правило, выше валентной. Эти две зоны в диэлектриках и полупроводниках разделены запрещенной зоной , т. е. энергетической зоной, в которой не может находиться ни один электрон.

Диэлектрики, полупроводники и металлы с точки зрения зонной теории различаются только шириной запрещенной зоны. Диэлектрики имеют самую широкую запрещенную зону, иногда достигающую 15 эВ. При температуре абсолютного нуля электронов в зоне проводимости не имеется, но при комнатной температуре в ней уже будет некоторое количество электронов, выбитых из валентной зоны за счет тепловой энергии. В проводниках (металлах) зона проводимости и валентная зона перекрываются, поэтому при температуре абсолютного нуля в этой перекрытой зоне имеется достаточно большое количество электронов проводимости, которые могут двигаться и образовывать ток. Полупроводники имеют небольшие запрещенные зоны, и их электропроводность сильно зависит от температуры и других факторов, а также наличия примесей.

Электропроводность металлов

Ещё задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества. Изящный по своей простоте эксперимент, который выполнил немецкий физик Карл Виктор Эдуард Рикке (Carl Viktor Eduard Riecke) в 1901 году, убедительно доказал, что носителями тока в металлах является некая субстанция, на тот момент неизвестная. Он в течение года пропускал электрический ток через своеобразный «сэндвич» из разнородных металлов (медь-алюминий-медь) и, по завершению эксперимента, обнаружил отсутствие смешивания металлов. Позднее, трудами датского учёного Нильса Бора была создана и блестяще подтверждена теория планетарного устройства атома, состоящего из положительного ядра, включающего в себя частицы, которые мы сейчас называем нуклонами - это протоны и нейтроны - и внешних оболочек из отрицательно заряженных электронов. Этой теорией до сих пор пользуются физики, правда, привнеся в неё некоторые коррективы.

Проводимость металлов обусловлена наличием большого числа валентных электронов с внешних оболочек атомов металлов, которые не принадлежат конкретному атому, но стают достоянием всего ансамбля атомов образца. Совершенно естественно, что атомы металлов, имеющие на внешней оболочке большее число электронов, имеют и более высокую электропроводность - сюда относятся медь (Cu), серебро (Ag) и золото (Au), что всегда отличало ценность этих металлов для электротехники и электроники.

Электропроводность полупроводников

Электропроводность собственно полупроводников носит электронный характер и сильно зависит от примесей. Техническое использование этого свойства нашло применение в создании усилительных и ключевых элементов современной электроники. Характерными полупроводниками являются четырёхвалентные германий (Ge) и кремний (Si), образующие кристаллическую структуру из атомов, связанных между собой ковалентными связями из электронных пар внешней оболочки атомов. Привнесение примесей резко меняет проводимость этих полупроводников. Например, при добавлении пятивалентных атомов галлия(Ga) или мышьяка (As), в полупроводнике образуется избыток валентных электронов, которые становятся общим достоянием образца полупроводника, в этом случае говорят о проводимости n-типа. Если к полупроводнику добавляется трёхвалентный индий (In), то образуется недостаток валентных электронов, в этом случае говорят о «дырочной» проводимости р-типа.

Электропроводность полупроводников сильно зависит от приложения внешних факторов, как-то: электрического или магнитного поля, освещения светом различной интенсивности и спектра или воздействия разного рода облучений вплоть до гамма-квантов. Слово «кванты» в английской терминологии не используется. Это свойство легированных полупроводников нашло широкое применение в современных технологиях. Уникальным свойством односторонней проводимости обладает сочетание полупроводников с различными видами проводимости, так называемый p-n переход, ставший основой современной электроники.

Электропроводность электролитов

Электропроводность электролитов - это способность растворов веществ проводить электрический ток при приложении электрического напряжения. Носителями тока в них являются положительно и отрицательно заряженные ионы - катионы и анионы , которые существуют в растворе вследствие электролитической диссоциации. Ионная электропроводность электролитов, в отличие от электронной, характерной для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений.

Общая (суммарная) проводимость состоит из проводимости катионов и анионов, которые под действием внешнего электрического поля движутся в противоположных направлениях. Она связана с подвижностью ионов - характеристикой, зависящей от размеров и заряда имеющихся катионов и анионов. Как было доказано, уникальная подвижность ионов воды - атома водорода катиона Н+ и аниона гидроксильной группы ОН-, обусловлена строением воды, образующей ассоциации молекул с определённым зарядом. Механизм передачи заряда в таких ассоциациях называется крокетным и напоминает по своей сути механизм передачи энергии в бильярде – когда вы наносите удар битком в серию последовательно стоящих шаров, из этой ассоциации вылетает последний дальний шар.

Электропроводность воды, этого самого универсального растворителя на Земле, сильно зависит от примесей растворяемых веществ, именно поэтому электропроводность морской или океанической воды резко отличается от электропроводности пресной воды рек и озёр (мы также пользуемся лечебными свойствами минеральных вод, и отсюда проистекают легенды о живой и мёртвой воде).

Количественно электропроводность электролитов характеризуют эквивалентной электропроводностью - проводящей способностью всех ионов, образующихся в 1 грамм-эквиваленте электролита.

Электропроводность газов

Электропроводность газов обусловлена наличием в них свободных электронов и ионов, поэтому и называется электронно-ионной проводимостью. Для газов, в силу их разрежённости, характерна большая длина пробега до столкновения молекул и ионов; из-за этого их электропроводность в нормальных условиях невысока. То же самое можно утверждать относительно смесей газов. Природной смесью газов является атмосферный воздух, который в электротехнике считается хорошим изолятором. Электропроводность газов очень сильно зависит от различных физических факторов, как-то: давления, температуры, состава смеси. Помимо этого, действие оказывают различного рода ионизирующие излучения. Так, например, будучи освещенными ультрафиолетовыми или рентгеновскими лучами, или находясь под действием частиц, испускаемых радиоактивными веществами, или, наконец, под действием высокой температуры, газы приобретают свойство проводить электрический ток.

Этот процесс носит название ионизации. Механизмы её действия различны: в верхних слоях атмосферы Земли преобладает фотохимическая ионизация за счёт захвата нейтральной молекулой фотона ультрафиолетового излучения или кванта рентгеновского излучения, с испусканием отрицательного электрона и превращением молекулы в положительно заряженный ион. В свою очередь, свободный электрон, присоединяясь к нейтральной молекуле, превращает её в отрицательно заряженный ион. В нижних слоях атмосферы преобладает ударная ионизация за счёт столкновения молекул газа с корпускулярными частицами солнечного и космического излучений.

Необходимо заметить, что число положительных и отрицательных ионов в атмосферном воздухе при обычных условиях очень малó по сравнению с полным числом его молекул. В 1 кубическом сантиметре газа при обычных условиях давления и температуры содержится около 30 * 10¹⁸ молекул. В то же время в том же объёме количество ионов обоих типов равно в среднем 800–1000. Это количество ионов варьирует в полном соответствии с временем года и временем суток, зависит от геологических, топографических и метеорологических условий и от погоды: так, например, летом число ионов значительно больше, чем зимой, в ясную и сухую погоду больше, чем в дождливую и облачную, при тумане ионизация приземной атмосферы сводится практически к нулю.

Электропроводность в биологии

Знание электропроводности биологических объектов даёт в руки биологов и медиков мощный метод исследования, диагностики и даже лечения. Учитывая то обстоятельство, что земная жизнь зародилась в морской воде, по сути дела являющейся электролитом, все биологические объекты в той или иной степени с точки зрения электрохимии представляют собой электролит, вне зависимости от особенностей структуры данного объекта.

Но, при рассмотрении протекания тока через биологические объекты, надо учитывать их клеточное строение, существенным элементом которого является клеточная мембрана - внешняя оболочка, ограждающая клетку от воздействия неблагоприятных факторов окружающей среды за счёт свойств селективности. По своим физическим свойствам клеточная мембрана представляет собой параллельное соединение конденсатора и сопротивления, что предопределяет зависимость электропроводности биологического материала от частоты прилагаемого напряжения и формы его колебаний.

В общем случае, биологическая ткань представляет собой конгломерат из клеток собственно органа, межклеточной жидкости (лимфы), кровеносных сосудов и нервных клеток. Поскольку последние в ответ на воздействие электрического тока отвечают возбуждением, протекание тока в биологической ткани, а значит и её электропроводность носит нелинейный характер.

При низких частотах воздействующего тока (до 1 кГц), электропроводность биологических объектов определяется свойствами электропроводности лимфы и каналов кровоснабжения, при больших частотах (свыше 100 кГц) электропроводность биологических объектов пропорциональна общему количеству электролитов, содержащихся в ткани между электродами.

Знание характерных значений удельной электропроводности биологических тканей и характеристик клеточных мембран позволяет создавать приборы объективного контроля процессов, происходящих в клетках организма. Эта информация также помогает при диагностике заболеваний, и создании устройств, применяемых для лечения (электрофорез).

К сожалению, скорость протекания электрохимических реакций невысока, поэтому мы ухитряемся получить ожог раньше, чем отдёрнем руку от чего-то очень горячего - не успевают нервы передать сигнал опасности в мозг, а тот, в свою очередь, отреагировать немедленно – скорость реакции на внешние раздражители у нас составляет сотни миллисекунд. Именно поэтому службы управления движением запрещают нам садиться за руль в состоянии алкогольного или наркотического опьянения, из-за дополнительного снижения скорости реакции.

Сверхпроводимость

Открытое Камерлинг-Онессом в 1911 году явление сверхпроводимости (нулевого сопротивления протеканию тока) для ртути, охлаждённой до –270 градусов Цельсия, произвело переворот во взглядах физиков, обратив их внимание на квантовые процессы, обусловливающие такое состояние вещества.

С тех пор ученые включились в гонку температур, поднимая планку сверхпроводимости веществ всё выше и выше. Разработанные ими соединения, сплавы и керамики (фторированная HgBa 2 Ca 2 Cu 3 O 8+δ или Hg−1223) подняли температуру сверхпроводимости до 138 Кельвинов, что ненамного ниже минимальной температуры на Земле. Последней волшебной палочкой, позволяющей достичь вековой мечты, стали новые материалы с фантастическими свойствами - графен и графеноподобные материалы.

В первом приближении (достаточно грубом) сверхпроводимость металлов может быть объяснена отсутствием колебаний атомов кристаллической решётки, что уменьшает вероятность соударений с ними электронов.

Остановимся на нескольких аспектах практического применения сверхпроводимости. Первая коммерческая сверхпроводящая линия электропередачи была запущена в эксплуатацию фирмой American Superconductor на Лонг-Айленде в Нью-Йорке в конце июня 2008 года. Южнокорейская компания LS Cable собирается создать в Сеуле и других городах сверхпроводящие линии электропередач с общей длиной сверхпроводящего кабеля в 3000 км. А трёхфазный концентрический кабель на 10 000 вольт проекта AmpaCity, разработанный и внедрённый в Германии, рассчитан на передачу 40 мегаватт мощности. По сравнению с медным кабелем такого же размера, сверхпроводящий кабель может передавать в пять раз больше энергии, несмотря на толстую охлаждающую рубашку. Проект запущен в работу в г. Эссен, Германия в 2014 году.

Также заслуживает внимания проект транспортировки электроэнергии (и водорода) из пустыни Сахара. По оценкам специалистов, существующие технологии способны обеспечить нужды всего человечества всего лишь 300-ми квадратными километрами солнечных батарей, размещёнными в пустыне Сахара. А для нужд всей Европы требуется только 50 квадратных километров. Но вопрос упирается в транспортировку этой энергии. Из-за потерь на передачу уйдёт 100% всей произведённой энергии. Был предложен весьма оригинальный способ передачи её без потерь через трубки из диборида магния (MgB₂), охлаждаемые изнутри потоком жидкого водорода. В результате имеем передачу электроэнергии через сверхпроводник без потерь плюс экологически чистое топливо - водород, производящийся на месте.

И, кроме того, использование солнечной энергии для производства электроэнергии и водорода таким способом, не будет нарушать экологического и теплового баланса Земли, что не присуще современным способам получения электроэнергии за счёт ископаемого топлива, будь то нефть или газ или уголь. Ведь их использование означает введение в атмосферу дополнительной солнечной энергии, ранее аккумулированной самой природой в этих источниках.

Отдельным вопросом применения сверхпроводимости на практике является применение магнитной левитации для наземного транспорта (поезда на магнитной подушке). Исследования показали, что этот вид транспорта будет в три раза эффективнее автомобильного транспорта и в пять раз эффективнее самолётов.

102.50 Кб

Электропроводность.

Электрическая проводимость (электропроводность, проводимость) - это способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению. В системе СИ единицей измерения электрической проводимости является См. О способности отдельных веществ проводить электрический ток можно судить по их удельному электрическому сопротивлению ρ . Для суждения об электропроводности материалов пользуются также понятием удельная электрическая проводимость

Удельная электрическая проводимость измеряется в сименсах на метр (См/м).

Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

где γ - удельная проводимость,

J - вектор плотности тока,

E - вектор напряжённости электрического поля.

Электрическая проводимость G проводника может быть выражена следующими формулами:

G = 1/R = S/(ρl) = γS/l = I/U

где ρ - удельное сопротивление,
S - площадь поперечного сечения проводника,
l - длина проводника,
γ = 1/ρ - удельная проводимость,
U - напряжение на участке,
I - ток на участке.

Измеряется электрическая проводимость в сименсах: [G] = 1/1 Ом = 1 См.

В веществах имеется два типа носителей зарядов: электроны или ионы. Движение этих зарядов создает электрический ток.

Электропроводность различных веществ зависит от концентрации свободных электрически заряженных частиц. Чем больше концентрация этих частиц, тем больше электропроводность данного вещества. Все вещества в зависимости от электропроводности делят на три группы: проводники, диэлектрики и полупроводники.

  • В зависимости от вида носителей тока различают:
  • - электронную проводимость в металлах и полупроводниках (передвижение в веществе свободных электронов как основных носителей зарядов)
  • - ионную проводимость в электролитах (упорядоченное передвижение в веществе ионов)
  • - смешанную электронно-ионную проводимость в плазме

  • Вода. Лед. Пар.

    Вода (оксид водорода)- химическое вещество в виде прозрачной жидкости, не имеющей цвета (в малом объёме), запаха и вкуса (при нормальных условиях). Химическая формула: Н2O. В твёрдом состоянии вода называется льдом или снегом, а в газообразном - водяным паром. Вода является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы).

    В отдельно рассматриваемой молекуле воды атомы водорода и кислорода, точнее их ядра, расположены так, что образуют равнобедренный треугольник. В вершине его – сравнительно крупное кислородное ядро, в углах, прилегающих к основанию, – по одному ядру водорода.

    Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра. При этом ядра водорода “оголяются”. Таким образом, электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр.

    Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Однако, в жидком состоянии вода – неупорядоченная жидкость; эти водородные связи - спонтанные, короткоживущие, быстро рвутся и образуются вновь. Всё это приводит к неоднородности в структуре воды.

    То, что вода неоднородна по своему составу, было установлено давно. Лёд плавает на поверхности воды, то есть плотность кристаллического льда меньше, чем плотность жидкости.

    Почти у всех остальных веществ кристалл плотнее жидкой фазы. К тому же и после плавления при повышении температуры плотность воды продолжает увеличиваться и достигает максимума при 4°C. Менее известна аномалия сжимаемости воды: при нагреве от точки плавления вплоть до 40°C она уменьшается, а потом увеличивается. Теплоёмкость воды тоже зависит от температуры немонотонно.

    Кроме того, при температуре ниже 30°C с увеличением давления от атмосферного до 0,2 ГПа вязкость воды уменьшается, а коэффициент самодиффузии - параметр, который определяет скорость перемещения молекул воды относительно друг друга растёт.

    Каждая молекула воды в кристаллической структуре льда участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах - по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28", направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру.

    Водяной пар - газообразное состояние воды в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами. Он не имеет цвета, вкуса и запаха, образуется молекулами воды при ее испарении. Пар характеризуется очень слабыми связями между молекулами воды, а также их большой подвижностью. Его частицы почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения. Свойства насыщенного пара (плотность, удельная теплоемкость и др.) определяются только давлением.

    Электрическая проводимость воды

    Чистая вода является плохими проводником электричества. Но тем не менее, хоть и очень мало, но она может проводить электрический ток из-за частичной диссоциации молекул воды на ионы H+ и OH–. Основное значение для электропроводности и воды и льда имеют перемещения ионов H+, так называемые «протонные перескоки». Малая, почти отсутствующая проводимость обусловлена тем, что вода состоит из электрически нейтральных атомов и молекул, движение которых не может осуществить электрический ток. Однако растворы солей, кислот и щелочей в воде и некоторых других жидкостях хорошо проводят ток, причем чем больше растворенного вещества, тем большая его часть распадается на ионы, и тем выше проводимость раствора.

    Концентрация ионов это первый фактор, влияющий на проводимость. Если при растворении не происходит диссоциации молекул, то раствор не является проводником электричества.

    Остальные факторы: заряд иона (ион с зарядом +3 переносит в три раза больше ток, чем с зарядом +1); подвижность иона (тяжелые ионы движутся медленнее, чем легкие), а также температура. Раствор, проводящий электрический ток, называется электролитом.

    Минерализация воды резко понижает ее удельное электрическое сопротивление, а значит увеличивает ее удельную проводимость. Так, у дистиллированной воды оно составляет примерно 10ˉ 5 См/м, а у морской - порядка 3,33 См/м (для сравнения: бумага - 10ˉ 15 , медь - 0,5·10 8 См/м). Электрическая проводимость воды может служить показателем ее загрязнения.

    Электропроводность льда

    Электрическая проводимость льда весьма мала и во много раз меньше электрической проводимости воды, особенно если вода хотя бы немного минерализована. Например, удельная электропроводность пресноводного льда при температуре 0°С равна 0,27·10ˉ 7 См/м, а при -20°С равна 0,52·10ˉ 7 См/м, тогда как дистиллированная вода, из которой был получен этот лед, имела проводимость порядка 10ˉ 6 См/м.

    Низкая проводимость льда обусловлена тем, что в обычных условиях в нем практически не содержится ни свободных носителей заряда, ни атомов, которым не хватает электрона (так называемых «дырок»).

    Сухой снег, прежде всего, характеризуется малой электрической проводимостью, что позволяет располагать на его поверхности даже не изолированные провода. Его проводимость при температуре от -2 до -16 °С примерно 0,35*10ˉ 5 - 0,38·10ˉ 7 См/м и близка к удельной проводимости сухого льда. Влажный снег, напротив, обладает большой электрической проводимостью доходящей до 0,1 См/м.

    Повысить проводимость льда можно при помощи минерализации (насыщения ионами) исходной воды кислотами, солями и основаниями. Тогда ионы будут оттягивать на себя электроны от соседнего атома, а те в свою очередь становиться ионами. Так, путем последовательного оттягивания будет перемещаться положительный заряд.

    Проводимость водяного пара

    Сам по себе пар, являясь газом в котором отсутствуют заряженные частицы и не является проводником электричества. Однако, повысить проводимость можно, если создать в нем заряженные частицы – молекулы, под воздействием различных внешних взаимодействий. Наибольшее влияние оказывают такие внешние агенты как рентгеновские лучи, лучи радия, сильный нагрев газа. Вызывают ионизацию, например приборы, называемые ионизаторами.

    Механизм ионизации в газах заключается в следующем: нейтральные атомы и молекулы содержат одинаковое количество положительного электричества в виде центральных ядер и отрицательного – в виде электронов, окружающих эти ядра. Под воздействием различных причин электрон может быть вырван, и молекула, которая остаётся, приобретает положительный заряд. А вырванный электрон не остаётся свободным, он захватывается одной или несколькими нейтральными молекулами и сообщает им отрицательный заряд. В итоге получается пара противоположно заряженных ионов. Для того, чтобы электрон оторвался от атома ему необходимо затратить определённую энергию – энергию ионизации. Эта энергия различна для разных веществ и зависит от строения атома.

    Каждый молекулярный ион, который образовался, притягивает нейтральные молекулы, и тем самым образует целый ионный комплекс. Ионы противоположных знаков, при столкновении друг с другом, нейтрализуют друг друга, в результате чего опять получаются исходные нейтральные молекулы –такой процесс называется рекомбинацией. При рекомбинации электрона и положительного иона высвобождается определённая энергия, которая равна энергии, затраченной на ионизацию.

    После того, как прекращается действие ионизатора количество ионов в газе с течением времени становится всё меньше, и в конце концов практически сводится к нулю. Это объясняется тем, что электроны и ионы принимают участие в тепловом движении и поэтому соударяются друг с другом. В результате столкновения электрона и положительного иона они воссоединяются в нейтральный атом. А когда сталкиваются положительный и отрицательные ионы, последний в свою очередь может отдать положительному иону свой собственный избыточный электрон и оба иона станут нейтральными молекулами.

    Из этого следует, что проводимость пара - явление временное. Стоит только прекратить ионизацию газа, как он перестанет быть проводящим, тогда как жидкость всегда остается проводником электрического тока.

    Список использованной литературы:

    • Вукалович М. П., Новиков И. И., Техническая термодинамика, 4 изд., М., 1968;
    • Зацепина Г.Н. Физические свойства и структура воды. М., 1987
    • А.Н. Матвеев. Электричество и магнетизм.
    • http://ru.wikipedia.org/wiki/
    • http://www.o8ode.ru/article/ water/
    • http://provodu.kiev.ua/smelye- teorii/led

    Описание работы

    Электрическая проводимость (электропроводность, проводимость) - это способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.

    Добрый день!
    Подскажите, существует ли какой либо теореточеский метод определения проводимости воды с растворенными в ней соединениями, если известна исходная проводимость воды и точное количественное содержание растворенных в воде соединений.

    Заранее благодарю!

    Точный расчет удельной электропроводности производят по специальным эмпирическим формулам с использованием откалиброванных растворов хлористого калия с заранее известной величиной УЭП. Измеренную величину принято отображать с использованием единицы измерения Сименс, 1 См обратен 1 Ом. Причем для соленой воды результаты исследований отображаются См/м, а пресной воды – в мкСм/метр, то есть в микросименсах. Измерение электропроводности водных растворов дает для дистиллированной воды величину УЭП от 2 до 5 мкСм/метр, для атмосферных осадков величину от 6 до 30 и более мкСм/метр, а для пресных речных и озерных вод в тех районах, где воздушная среда сильно загрязнена, величина УЭП может колебаться в пределах 20-80 мкСМ/см.

    Для приблизительной оценки УЭП можно воспользоваться эмпирически найденным соотношением зависимости УЭП от содержания солей в воде (минерализация):

    УЭП ( мкСм/cм ) = содержание солей (мг / л) / 0,65

    То есть, для определения УЭП (мкСм/cм) показатель содержание солей (минерализацию воды) (мг/л) делят на поправочный коэффициент 0,65. Величина этого коэффициента колеблется в зависимости от типа вод в диапазоне 0,55-0,75. Растворы хлористого натрия проводят ток лучше: содержание NaCl (мг/л) = 0,53 мкСм/cм или 1 мг/л NaCl обеспечивает электропроводность в 1,9 мкСм/cм.

    Для ориентировочного расчета УЭП по содержанию солей в воде (минерализации) можно воспользоваться следующим графиком (рис. 1):

    Рис. 1. График зависимости УЭП от содержания в воде солей (минерализации).

    УЭП также измеряется при помощи специального прибора – кондуктометра, состоящего из платиновых или стальных электродов, погружаемых в воду, через которые пропускается переменный ток частотой от 50 Гц (в маломинерализованной воде) до 2000 Гц и более (в соленой воде), путем измерения электрического сопротивления.

    Принцип действия кондуктометра основан на прямой зависимости электроводности воды (силы тока в постоянном электрическом поле, создаваемом электродами прибора) от количества растворенных в воде соединений. Широкий спектр соответствующего оборудования позволяет сейчас измерять проводимость практически любой воды, от сверхчистой (очень низкая проводимость) до насыщенной химическими соединениями (высокая проводимость).

    Кондуктометр можно приобрести даже в зоомагазинах, при этом возможны комбинации такого прибора с рН метром. Кроме того, такой прибор можно приобрести в конторах и фирмах, торгующих оборудованием для экологических исследований www.tdsmeter.ru/com100.html.

    Умельцы, хорошо владеющие паяльником, могут сами изготовить прибор для измерения электропроводности конструкции И.И.Ванюшина. (журнал "Рыбное хозяйство", 1990 г., №5, стр. 66-67. Кроме того, во всех деталях это устройство и способы его калибровки описаны в очень полезной книге "Современный аквариум и химия", авторы И.Г.Хомченко, А.В.Трифонов, Б.Н.Разуваев, Москва, 1997 г). Прибор сделан на распространенной микросхеме К157УД2, которая представляет собой два операционных усилителя. На первом собран генератор переменного тока, на втором – усилитель по стандартной схеме, с которого снимаются показания цифровым или аналоговым вольтметром (рис. 2).

    Рис. 2. Самодельный кондуктометр.

    Для исключения влияния температуры измерения эоектропроводности производятся при постоянной температуре 20 0 С, поскольку значение электропроводности и результат измерений зависят от температуры, как только температура повышается хотя бы на 1 0 С, измеряемая величина электропроводности тоже увеличивается приблизительно на 2 %. Чаще всего ее пересчитывают по отношению к 20 0 С по корректировочной таблице, либо приводятся к ней с использованием эмпирических формул.

    Корректировочная таблица для расчета УЭП.

    Температура, °С

    Поправочный коэффициент

    Температура, °С

    Поправочный коэффициент

    Температура, °С

    Поправочный коэффициент

    Расчет удельной электропроводности воды в данном случае производится по формуле:

    УЭП = C п / R

    где C п - емкость датчика прибора, зависящий от материала и размеров электродов и имеющий размерность см-1, определяется при тарировке прибора по растворам хлористого калия с известной величиной удельной электропроводности; K - температурный коэффициент для приведения измеренной величины при любой температуре к принятому постоянному ее значению; R - измеренное электрическое сопротивление воды прибором, в Омах.

    Прибор необходимо отградуировать в значениях сопротивления. Для градуировки можно рекомендовать следующие сопротивления: 1 кОм (электропроводность 1000 мкСм), 4 кОм (250 мкСм), 10 кОм (100 мкСм).

    Для того, чтобы точнее определить удельную электропроводность, нужно знать постоянную сосуда для измерения СX. Для этого необходимо приготовить 0,01 М раствора хлорида калия (KCl) и измерить его электросопротивление R KCl , (в кОм) в приготовленной ячейке. Емкость сосуда определяется по формуле:

    C п = R KC УЭП KCl

    где УЭП KC - удельная электропроводность 0,01М раствора KCl при данной температуре в мкСм/см, найденная по корректировочной таблице.

    Расчет УЭП после этого производится по формуле:

    УЭП = C п {K Т } / R

    где C п - емкость датчика прибора, зависящий от материала и размеров электродов и имеющий размерность см -1 , определяется при калибровке прибора по растворам хлористого калия с известной величиной УЭП; K т - температурный коэффициент для приведения измеренной величины при любой температуре к принятому постоянному ее значению; R - измеренное электрическое сопротивление воды прибором, в Омах.

    УЭП соленой воды принято выражать в См/м (См - Сименс, величина, обратная Ому), пресной воды - в микросименсах (мкСм/см). УЭП дистиллированной воды равна 2-5 мкСм/см, атмосферных осадков - от 6 до 30 мкСм/см и более, в районах с сильно загрязненной воздушной средой, речных и пресных озерных вод 20-800 мкСм/см.

    Нормируемые величины минерализации приблизительно соответствуют удельной электропроводности 2 мСм/см (1000 мг/дм 3) и 3 мСм/см (1500 мг/дм 3) в случае как хлоридной (в пересчете на NaCl), так и карбонатной (в пересчете на CaCO 3). минерализации.

    Чистая вода в результате ее собственной диссоциации имеет удельную электрическую проводимость при 25 С равную 5,483 мкСм/м.

    Более подробно о методах расчета УЭП смотрите в соответствующих разделах нашего сайта.

    К.х.н. О.В. Мосин

    Ниже приводятся методические по расчету общей минерализации, ионной силы, жесткости и определения содержания сульфат-ионов в природных и сточных водах по величине удельной электропроводности как обобщенного показателя их качества.

    Определение электропроводности (L) воды сводится к измерению обратной ее величины - сопротивления (R), которое вода оказывает приходящему через нее току. Таким образом, L= 1:R, и поэтому величина электропроводности выражается в обратных Омах, а по современной классификации СИ - в Сименсах (См).

    Величина удельной электропроводности сохраняется неизменной в пределах допускаемой погрешности (10%) при наличии в природных и сточных водах различных по природе органических соединений (до 150 мг/дм) и взвешенных веществ (до 500 мг/дм3).

    Для измерения удельной электропроводности (кси) могут быть использованы любые кондуктометры с диапазоном от 1*10(-6) См/см до 10*10(-2) См/см.

    1. ПОЛУЧЕНИЕ И КОНТРОЛЬ КАЧЕСТВА ДИСТИЛЛИРОВАННОЙ ВОДЫ

    1.1. НОРМАТИВЫ КАЧЕСТВА

    В лабораториях по контролю качества природных и сточных вод дистиллированная вода является основным растворителем для приготовления реактивов, разбавителем исследуемых проб, экстрагентом, а также используется для ополаскивания лабораторной посуды. Поэтому для успешной работы любой химико-аналитической лаборатории наряду с выполнением таких условий, как высокая квалификация специалистов, наличие точных поверенных приборов, использование реактивов требуемой степени чистоты, стандартных образцов и стандартной мерной посуды, большое внимание должно быть уделено качеству дистиллированной воды , которая по своим физико-химическим показателям должна соответствовать требованиям ГОСТ 670972 (см. таблицу).

    НОРМАТИВЫ

    КАЧЕСТВА ДИСТИЛЛИРОВАННОЙ ВОДЫ ПО

    рН ¦ 5,4-6,6 ¦

    Вещества, восстанавливающие КМnО4 ¦ 0,08 ¦

    Остаток после выпаривания ¦ 5,0 ¦

    Остаток после прокаливания ¦ 1,0 ¦

    Аммиак и соли аммония ¦ 0,02 ¦

    Нитраты ¦ 0,20 ¦

    Сульфаты ¦ 0,50 ¦

    Хлориды ¦ 0,02 ¦

    Алюминий ¦ 0,05 ¦

    Железо ¦ 0,05 ¦

    Кальций ¦ 0,80 ¦

    Медь ¦ 0,02 ¦

    Свинец ¦ 0,05 ¦

    Цинк ¦ 0,20 ¦

    Удельная электропроводность при 20 град. С не более 5*10(-6) См/см

    Если все показатели соответствуют установленным нормам, то дистиллированная вода пригодна для использования в лабораторных исследованиях, и ее качество не повлияет на метрологические характеристики выполняемых в лаборатории анализов. Нормативы периодичности проведения контроля качества дистиллированной воды не установлены.

    1.2. ПОЛУЧЕНИЕ И КОНТРОЛЬ КАЧЕСТВА

    Дистиллированную воду получают в дистилляторах различных марок. Дистиллятор устанавливают в отдельном помещении, воздух которого не должен содержать вещества, легко поглощаемые водой (пары аммиака, соляной кислоты и др.). При первоначальном пуске или при пуске дистиллятора после длительной консервации пользование дистиллированной водой разрешается только после 40 часов работы дистиллятора и после проверки качества получаемой воды в соответствии с требованиями ГОСТ .

    В зависимости от состава исходной воды может быть получена дистиллированная вода различного качества.

    При высоком содержании в воде солей кальция и магния на поверхности нагревательных элементов, внутренних стенках парообразователя и холодильной камеры образуется накипь, в результате чего ухудшаются условия теплообмена, приводящие к снижению производительности и сокращению срока службы дистиллятора. В целях умягчения исходной воды и уменьшения образования накипи аппарат целесообразно эксплуатировать в комплексе с противонакипным магнитным устройством или химическим водоподготовителем (на основе ионообменных смол в натриевой форме), например марки КУ-2-8чс.

    Вопрос о сроках проведения периодической профилактической промывки дистиллятора и очистки от накипи решается опытным путем, руководствуясь при этом данными о качестве дистиллированной воды при периодическом контроле . После очистки и промывки дистиллятора дистиллированная вода вновь анализируется по всем показателям согласно ГОСТ .

    Все результаты анализов воды следует вносить в журнал, где одновременно необходимо отражать режим работы дистиллятора. Анализ полученных результатов позволит установить для каждой исходной воды свой режим работы аппарата: период эксплуатации, срок его отключения для проведения профилактической чистки, мойки, промывки и т.д.

    Если в качестве исходной воды используется вода с высоким содержанием органических веществ, то часть их может перейти с отгоном в дистиллят и повысить контрольную величину окисляемости. Поэтому ГОСТ предусматривает определение содержания органических веществ, восстанавливающих марганцовокислый калий.

    Для освобождения перегоняемой воды от органических примесей и улучшения качества дистиллята рекомендуется использовать химические водоподготовители с гранулированным сорбентом из березового активированного угля или с макропористым гранулированным анионитом марки АВ-17-10П.

    При обнаружении в дистиллированной воде веществ, восстанавливающих перманганат калия в концентрации более 0,08 мг/дм необходимо провести вторичную перегонку дистиллята с добавлением в него перед отгоном раствора 1% КМnО4, из расчета 2.5 см.куб на 1 дм воды. Общая затрата времени на контроль качества дистиллированной воды по всем 14 показателям, указанным в таблице, составляет 11 часов рабочего времени аналитика (65 лабораторных единиц ). Определение удельной электропроводности воды выгодно отличается по временным затратам от традиционного химического анализа при определении отдельных показателей, т.к. затрата времени на ее определение составляет не более 1 лабораторной единицы (10 минут) и рекомендуется как экспресс - метод при контроле качества дистиллированной воды.

    По величине удельной электропроводности можно обобщенно охарактеризовать всю сумму составляющих остаточного количества минеральных веществ (в том числе нитраты, сульфаты, хлориды, алюминий, железо, медь, аммиак, кальций, цинк, свинец).

    При необходимости получения экспрессных сведений о содержании в воде сульфат-ионов последнее может быть рассчитано по величине удельной электропроводности и содержанию гидрокарбонати хлорид-ионов (см. раздел 2).

    Согласно ГОСТ результат намерения величины дистиллированной воды выражается при 20 град. С

    1.3. УСЛОВИЯ ХРАНЕНИЯ

    Дистиллированная вода для лабораторных исследований должна быть свежеперегнанной. При необходимости воду можно хранить в герметически закрытых полиэтиленовых или фторопластовых бутылях. Для предотвращения поглощения из воздуха углекислоты бутыли с дистиллированной водой должны быть закрыты пробками с хлоркальциевыми трубками. Безаммиачная вода хранится в бутыли, закрытой пробкой с "гуськом", содержащим раствор серной кислоты.

    3. УСТАНОВЛЕНИЕ ВЕЛИЧИНЫ ОБЩЕЙ МИНЕРАЛИЗАЦИИ ВОДЫ

    3.1. ПРИРОДНЫЕ ВОДЫ

    Одним из наиболее важных показателей качества воды является величина общей минерализации, обычно определяемая гравиметрически по сухому остатку. Используя данные химического анализа о содержании хлорид-, гидрокарбонати сульфат-ионов, с помощью переводных множителей можно рассчитать величину общей минерализации (М, мг/дм.куб.) исследуемой воды по формуле (2) :

    М=[НСО(3-)*80+[Сl-]-55+*67

    где [НСО(3-)], [Сl], - концентрации гидрокарбонат-, хлорид-, сульфат-ионов в мг-экв/дм.куб. соответственно. Численные множители приблизительно отвечают среднеарифметическим значениям молярных масс эквивалентов солей соответствующего аниона с кальцием, магнием, натрием и калием.

    3. СПОСОБ ОЦЕНКИ ИОННОЙ СИЛЫ ВОДНОГО РАСТВОРА

    В практике гидрохимических исследований величина ионной силы воды используется при контроле ионного состава воды с помощью ионселективных электродов, а также при экспрессном расчете общей жесткости.

    Расчет ионной силы (мю) природных и сточных вод производится по результатам двукратного измерения величины удельной электропроводности воды: неразбавленной (кси1) и разбавленной в соотношении 1:1 (кси2).

    Вычисление ионной силы производится по формуле (4) :

    (мю)=К*См10 (4)

    Где См - общая минерализация воды, рассчитанная по величине удельной электропроводности как а * 10(4) и выраженная в мг-экв/дм.куб;

    К - ионный показатель, устанавливаемый с помощью корректировочной таблицы по величинам См и кси2/кси1.

    Рассчитанные данным способом значения (мю) природных и сточных вод (даже содержащих большое количество взвешенных частиц) согласуются с величинами (мю), определенными по данным химического анализа содержания главных ионов; расхождение результатов двух способов не превышает 10%, что согласуется с допускаемыми нормативами воспроизводимости.

    Данный экспрессный способ определения ионной силы природных и сточных вод более экономичен и имеет преимущество при контроле мутных и окрашенных вод.

    4. СПОСОБ ОЦЕНКИ ОБЩЕЙ ЖЕСТКОСТИ ВОДЫ

    Смещая жесткость является одним из важнейших групповых показателей качества воды для всех типов водопользования. Общепринятое комплекснометрическое определение жесткости имеет существенное ограничение и не может быть использовано при анализе мутных и окрашенных вод, а также при значительном содержании ряда металлов. Такие воды при определении общей жесткости должны подвергаться специальной обработке , что сопряжено с увеличением расхода химических реактивов и дополнительными затратами рабочего времени на проведение анализа.

    Ускоренный способ оценки ориентировочной величины общей жесткости (Ж общ.) основан на данных, получаемых по результатам измерения электропроводности. Расчет производят по формуле (5) %

    Ж общ.= 2(мю) * 10(3) - (2См + SO4(2-)]) (5)

    где (мю) - величина ионной силы воды (расчет по данным электропроводности, см. раздел 4); См - общая минерализация, мг-экв/дм.куб. (расчет по данным электропроводности, см. раздел 4); - концентрация сульфат-ионов, мг-экв/дм.куб. (расчет по данным электропроводности, см. раздел 2, или другого метода). Погрешность определения жесткости данным способом находится в пределах допустимых норм (5% ). Способ рекомендуется как ускоренный для оценки общей жесткости в условиях массового анализа проб в системе экологического мониторинга, особенно в случае мутных, окрашенных вод и вод, сильно загрязненных ионами ряда тяжелых металлов.

    ЛИТЕРАТУРА

    ГОСТ 6709-72 "Вода дистиллированная".

    Указания по организации и структуре лабораторного контроля в системе Минжилкомхоза РСФСР. М. 1986.

    Воробьев И.И. Применение измерения электропроводности для характеристики химического состава природных вод. М., Изд-во АН СССР, 1963-141 с.

    Почкин Ю.Н. Определение электропроводности воды при изучении солевого режима открытых водоемов // Гигиена и санитария. 1967, N 5.

    ГОСТ 17403-72. Гидрохимия. Основные понятия. Термины и определения.

    Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. М., Химия, 1984.-447 с.

    РД 52.24.58-88. Методика выполнения измерений содержания сульфат-ионов титриметрическим методом с солью бария.

    РД 52.24.53-88. Методика выполнения измерении содержания сульфат-ионов с солью свинца.

    ГОСТ 27384-87. Вода. Нормы погрешности измерения показателен состава и свойств.

    ГОСТ 26449.1-85. Установки дистилляционные опреснительные стационарные. Методы химического анализа соленых вод.

    Информационный листок N 29-83. Определение содержания котловой воды. ЦНТИ, Архангельск. 1983.

    Руководство по химическому анализу поверхностных вод суши. Л., Гидрометеоиздат. 1977. - 537 с.

    Ускоренное установление общей минерализации, общей жесткости, ионной силы, содержания сульфат-ионов и свободной СО2 по удельной электропроводности. Казань. ГИДУВ. 1989. - 20 с.