Применение углеволокна в строительстве: армирование и усиление несущих конструкций. Почему углеродное волокно – уникальный материал? Углеродное волокно и его применение

Двадцать первый век пестрит инновациями, и строительная сфера тому не исключение.

Один из новейших и набирающих популярность материалов - углеродное (карбоновое) волокно - занял достойное место, частично вытеснив стеклохолст и подобные ему армирующие материалы.

Углеродная ткань: характеристики и особенности

Говоря строго, углеродное волокно не является изобретением нашего столетия. Его уже давно используют в авиа- и ракетостроении, обывателю же этот материал знаком в виде углепластиковых удочек и кевлара. Пройдя долгий этап освоения и совершенствования технологии, индустрия, наконец, стала готова обеспечивать углеродной тканью другие отрасли, в том числе и строительную.

Главная особенность углеродных нитей - высокий показатель удельной прочности на растяжение по отношению к собственному весу. Изделия, армированные углепластиком, сохраняют наивысшее из известных сопротивление на разрыв, при этом по материалоёмкости и общему весу они гораздо выгоднее распространённой на сегодняшний день стали.

В исходном виде углеволокно представляет собой тонкую микрофибру, которая может быть сплетена в нити, из которых, в свою очередь, может быть выткан холст любых размеров. За счёт правильной ориентации молекул, их прочной связи и достигается столь высокая прочность. В остальном волокна просто выполняют функцию армирования при любом типе конструктивного наполнителя, от эпоксидных смол до бетона.

Одна из наиболее выраженных особенностей углеволокна - его высокая сорбирующая способность. Выгода от применения карбона для укрепления элементов внутренней отделки состоит в том, что углерод не позволяет естественным примесям, красителям или растворителям проникать в воздушную среду жилых помещений. В то же время сорбционные процессы протекают абсолютно безвредно для самого волокна.

Преимущества использования

В общем и целом для строительства интересны два свойства углеволокна. Первое - структурное разностороннее укрепление - используется для придания материалу повышенной твёрдости и прочности на сжатие. Армирование структуры выполняется фиброй толщиной 5–10 мкм при различной длине волокон. Имеет смысл структурно укреплять отделочные поверхности и несущую конструкцию зданий.

Вторая цель карбоновых волокон в строительной отрасли - закладное армирование - выполняется дополнительно переработанной первичной фиброй, принимающей вид холста, ровинга, нитей, канатов и укреплённых полимерными смолами стержней. В этом случае карбоновое волокно не укрепляет сам заполнитель в целом, но служит надёжной нервущейся основой для него.

Но в чём выгода карбоновых волокон, и почему их следует предпочесть менее экзотичным материалам? Начнём с того, что по физико-химическим свойствам ближайший конкурент углеволокна - фибра стеклянная, которая достаточно широко распространена в виде стеклохолста для внутренних штукатурных работ. Однако стекло имеет гораздо более низкое сопротивление разрыву и больший вес, в то время как углеродный полимер не только прочен, но и гораздо лучше сцепляется с окружающим его твёрдым материалом за счёт высокой собственной адгезии.

Облицовка и структура, укреплённые таким образом, отличаются также увеличенной прочностью на сдвиг и скручивание, что для стали, стекла и других синтетических материалов всегда было существенной проблемой.

Однако не обходится без сложностей. В частности, при внутренней отделке зданий ставится вопрос о пожарной безопасности углеволокна. В присутствии кислорода оно выгорает уже при температурах около 350–400 °С, однако будучи «законсервированным» в безвоздушной среде, карбон сохраняет свои свойства даже при нагреве выше 1700 °C. Более высокую жаростойкость гарантирует фибра и её производные, покрытые разного рода карбидами - это надо учитывать при выборе материала для отделочных работ.

Применение в отделочных работах

Широкий ряд материалов декоративной отделки требует основания, абсолютно не подверженного образованию трещин. Сюда относится акриловая покраска, полимерные покрытия для пола, венецианская штукатурка и другие тонкие и хрупкие составы.

Если для фальшстен из ГКЛ эта проблема не стоит особенно остро, то иные материалы за счёт более выраженного линейного расширения требуют особого подхода. Для примера возьмём укрепление и изоляцию стыков однослойной обшивки, выполненной из ОСП. Практически любая шпаклёвка или клей раскрошится прямо внутри шва за год-два.

Такие стыки следует заполнять прочным полимерным клеем, а затем накрывать прилегающие края на 25–30 мм лентой из тонких карбоновых нитей и снова покрыть слоем наполнителя, тщательно разгладив заделку шпателем.

Подобная обработка в большинстве случаев не требует последующего выравнивания поверхности. Обшивка принимает монолитную прочность, а возникающие структурные перенапряжения полностью компенсируются свойствами ОСП.

Подобный принцип может применяться и при финишном выравнивании оштукатуренных стен акриловой шпаклёвкой. В этом случае углеткань - бесспорный лидер в вопросах придания ударопрочности и стойкости к трещинообразованию. Монтаж выполняется по аналогии со стеклохолстом:

  1. Сперва тонкая сплошная обмазка поверхности.
  2. Затем укладка полотна и его разглаживание.
  3. После чего можно сразу же приступать к финишному выравниванию.

Холст никак себя не проявляет на внешнем виде готовой поверхности ни до высыхания состава, ни после.

Использование углеродной фибры

Повышение прочности несущих элементов зданий, отлитых по месту или фабрично, возможно за счёт добавления углеволокна в жидкий состав наполнителя. Фибру из карбона уже сейчас можно приобрести в достаточно больших количествах, что позволит уменьшить толщину стен, колонн и прочих элементов бетонной конструкции, испытывающих вертикально-осевую нагрузку на сжатие. За счёт этого освобождается достаточно много пространства для структурной изоляции или утепления конструкций.

Особенно интересен этот материал будет для любителей свайно-ростверковых фундаментов, где работа карбоновой пряжи полностью наглядна. Столб, сохраняющий прочность на сжатие в 12–15 т с учётом всех рекомендуемых запасов надёжности, имеет толщину около 80 мм. Внутри него всего две нитки полимерной арматуры, а по двум другим сторонам уложены пряди углеродного ровинга.

Много ли требуется углеволокна для армирования бетона? Отнюдь, всего 0,05–0,12 % от массы готового ЖБИ. Концентрация может быть и выше, если речь идёт, например, о гидротехнических сооружениях или о бетонных фермах перекрытий.

Системы внешнего армирования

Структура, укреплённая карбоновым волокном, настолько прочна, что может применяться даже в качестве опоясывающего армирования для элементов сильно нагруженных конструкций. Начиная от высотного домостроения и заканчивая каркасными сборными конструкциями, внешний пояс армирования предоставляет небывалую устойчивость к эксплуатационным перегрузкам.

Суть в том, что сам сердечник элемента, содержащий закладную арматуру, отливается как обычно, но при минимальном защитном слое бетона по сторонам. После снятия опалубки изделие, будь то колонна или армирующий пояс, обматывается слоем углеродного полотна или толстой нитью, а затем заливается пескобетоном с содержанием фибры. Такой подход избавляет от нужды использовать тяжёлый гранитный бетон при полном наследовании его прочностных характеристик. Более того, даже минимальный слой укреплённого углеродом бетона существенно снижает корродирование закладной арматуры.

Частным случаем наружного армирования можно назвать оклеивание узлов соединений лоскутами или лентой из углеволокна, углеродной тканью с сопутствующей пропиткой эпоксидными смолами. Такое соединение демонстрирует втрое более высокую прочность, чем обычное, что неоценимо для стропильных систем и в особенности крепления ферм к мауэрлату.

Известно, что солидный показатель прочности на растяжение, относительно собственного веса, которым обладает углепластик, являет собой уникальное достижение материала и открывает радужные перспективы использования в народном хозяйстве. Использование карбона в современном строительстве пока еще не приняло широкомасштабного использования, хотя карбон купить в настоящее время не составляет трудности. Но простые и надежные методы применения обещают быть долгими.

Углеродное волокно

Первое получение углеродных волокон в результате пиролиза вискозного волокна и использование для нитей накаливания было запатентовано Эдисоном в конце XVIII века.

Повышенный интерес к волокну появился в XX веке в результате поиска материала компонентов композита при изготовлении двигателей ракет и самолетов.

По своим качествам: термостойкости и теплоизоляционным свойствам, а также коррозионной стойкости, карбоновому волокну не было равных.

Характеристики первых образцов полиакрилонитрильных (ПАН) волокон были невысокие, но усовершенствование технологии позволило получить углеводородные волокна прочностью карбонового волокна 2070 МПа и модулем упругости 480 ГПа.

Сегодня, углепластик или карбон имеет масштабный спектр применения в строительстве:

  • для системы внешнего армирования
  • для ремонта несущих конструкций складов и мостов, промышленных и жилых зданий.

Использование изделий из углеродного волокна предоставляет возможность проведения строительных мероприятий, по сравнению с существующими способами реконструкции или армирования, быстро и качественно.

Но рассказ о достижениях карбона был бы неполным, если не отметить его использование при изготовлении авиационных деталей.

Достижения отечественных авиапроизводителей составляют здоровую конкуренцию компании Mitsubishi Heavy Industries, производящей детали Boeing 787.

Производство изделий из полимерного материала

Полимерный материал – карбон представляет собой тонковолоконные нити ø от 5 до 15 мкм, образованные атомами углерода и объединенными в микрокристаллы. Именно выравнивание при ориентации кристаллов придает нитям хорошую прочность и растяжение, незначительный удельный вес и коэффициент температурного расширения, химическую инертность.

Производственные процессы получения ПАН волокон связаны с технологией автоклава и последующей пропиткой для упрочнения смолой. Углеродное волокно пропитывают пластиком (препрег) и пропитывают жидким пластиком, укрепляя нити волокна под давлением.

По физическим характеристикам углеродное волокно разделено на типы:

  • высокопрочные карбоновые волокна (состав 12000 непрерывных волокон)
  • волокна карбонизированные углеродные общего назначения (крученая нить из 2-х и более волокон длиной до 100 мм).

Углепластиковые конструкции, армированные изделиями из материала, уменьшают вес конструкции на 30%, а химическая инертность позволяет использовать карбоновые ткани при очистке агрессивных жидкостей и газов от примесей в качестве фильтра.

Производство углеродного волокна представлено в этом видео.

Номенклатура изделий из карбонового волокна

карбоновые ткани

Главным изделием из высокомодульного волокна карбона является углеродная (карбоновая) ткань толщиной 1,6 – 5,0 мм, имеющая структуру плетеного полотняного переплетения плотностью от 520 до 560 г/м².

Карбоновые ткани, обладатели нулевого коэффициента линейного расширения, имеют высокую стойкость к деформациям и коррозии.

Характеристиками стандартных углеродных тканей являются:

Параметрами карбоновых тканей являются:

  • ширина полотна 1000-2000мм
  • содержание углерода 98,5%
  • плотность 100-640 г/м2
  • толщина 0,25-0,30 мм.

Кроме карбоновых тканей основными изделиями высокомодульного волокна являются ленты и шнуры.

Различают следующие виды плетения тканей карбоновых, которые в определенной мере влияют на подвижность изделия:

  • полотняное переплетение, созданное по принципу переплетения каждой нити основы с уточной нитью 1/1, создавая лучшую прочность и подвижность ткани
  • сатиновое переплетение, при котором одна нить утка переплетает 4-5 нитей основы, уменьшая возможность сильного изгиба ткани
  • саржевое переплетение, у которого количество нитей основы перекрыто таким же количеством нитей утка.

Примером возможности саржевого переплетения является разноцветная карбоновая ткань. Карбоновую ткань разноцветную успешно используют при создании кевларовой одежды и вещей, отличающихся гигроскопичностью и способностью к воздухообмену. Кевлар из технических нитей с различной плотностью и структурой уже вошел в обиход авто и военной индустрии, потеснив стеклохолст и сталь.

Преимущества карбона ярко выражены в изделиях из карбонизированного углепластика.

изделия из карбонизированного волокна

Номенклатура изделий из карбонизированного волокна более расширена и представлена:

  • углеродной тканью карбонизированной RK-300 (заменитель стеклоткани)
  • тканью с односторонним алюминиевым покрытием RK-300AF (улучшенные свойства за счет термоэкрана позволяют использовать карбон в качестве теплоизоляционного обмоточного материала)
  • углеродными конструкционными тканями 1k, 3k, 6k, 12k, 24k, 48k
  • карбонизированными лентами и шнурами.

Тканый холст из карбонового или карбонизированного волокна отлично выполняет функции армирования, независимо от типа наполнителя.

Кроме того, с использованием карбонизированных волокон изготавливают экраны, поглощающие ЭМИ, термопары и электроды, а также радиотехнические изделия.

производство бассейнов с карбоновым усилением

При производстве бассейнов с усилением из карбона в технологию вводят этап добавления в керамический слой карбоновое усиление, древесную бальсу и вспененный каучук. Основанием создания двойного каркаса чаши бассейнов с карбоновым усилением послужили построенные эпюры нагрузки и допустимые напряжения на материал.

Сделаем, вывод, что набирающая обороты популярность использования карбонового волокна в перспективе сможет вытеснить с рынка армирующие материалы.

Для тех, кто никогда в жизни не видел ткацкого производства, экскурсия в этот небольшой цех могла бы, наверно, быть интересной и информативной. Для остальных — ничего особенного: шпулярник с большим количеством катушек, ткацкий станок — вот, собственно, и все. С той лишь разницей, что ткут здесь совсем необычные ткани. Из них не будут шить одежду, они не пойдут на палатки или декоративную драпировку. Вскоре этим тканям предстоит утратить гибкость и стать основой легких, порой изящных и обязательно нечеловечески прочных деталей. Ткацкий цех предприятия «Препрег-СКМ», обосновавшегося в одном из корпусов бывшего завода-гиганта АЗЛК, — это, пожалуй, самая середина производственного процесса, в ходе которого создается тот самый знаменитый карбон, или углепластик. Вместо шерстяных или хлопковых нитей к станку тянутся нити углеволокна — они могут быть толще или тоньше, да и ткань выходит с разными узорами плетения. Для чего такое разнообразие?

Чтоб было как в СССР

«Мы делаем ткани различных номиналов, разных плотностей и структур плетения — все в конечном итоге зависит от того, в каких углепластиковых деталях эти ткани будут использоваться, — объясняет «ПМ» Андрей Антонов, руководитель испытательной лаборатории предприятия.- Для использования в высоконагруженных конструкциях, например в авиации или судостроении, большей частью применяются однонаправленные материалы, где волокно в основном расположено в одном направлении. Там есть небольшое количество поперечных нитей (для скрепления всей ленты), но их процент очень невелик, менее 10%. Особенность таких тканей заключается в том, что они реализуют свои прочностные характеристики точно по линии, вдоль которой лежит волокно. Будущая карбоновая деталь будет состоять из десятков, возможно даже сотен слоев ткани. Если мы знаем, по каким направлениям на деталь будет оказываться наибольшее силовое воздействие, мы имеем возможность расположить ткань именно так, чтобы волокна большей части слоев также легли бы вдоль этих векторов. Это открывает широчайшие возможности для моделирования детали, для задания ей уникальных прочностных свойств».

В цеху также ткутся так называемые равнопрочные материалы, где процент нитей в основе и в поперечном направлении примерно одинаков. В виде углепластика эти ткани применяются как для армирования, так и для создания деталей, не испытывающих чрезмерных силовых нагрузок, зато имеющих более эстетичный вид. Речь идет, например, об углепластиковых деталях для тюнинговых автомобилей, протезах или спортивном инвентаре.

В ткацком цеху по стенам расставлено множество картонных коробок, где хранятся катушки с углеволокном. На одном ящике клеймо завода «Аргон» в Балаково, другой приехал из далекого Тайваня, третий родом из Турции. С заводом «Аргон» понятно: наряду с московским «Препрег-СКМ» он входит в созданный всего лишь в 2009 году холдинг «Композит», объединивший под своим управлением несколько предприятий по производству композитных материалов и имеющий своей задачей развитие в стране композитных технологий. Но почему Турция и Тайвань?

«Мы выпускаем разностороннюю продукцию для разных применений, и, к сожалению, на сегодня наша отечественная промышленность пока не обеспечивает все потребности рынка в углеродных материалах. Приходится использовать в том числе и импортное волокно, — говорит Андрей Антонов. — 30 лет назад в СССР активно работали над технологиями производства углепластиков, внедряли их в авиации, атомной промышленности и других отраслях. Были основаны НИИ «Графит», завод «Аргон». В те времена мы ничуть не отставали от зарубежных фирм, но перестройка и постперестроечная эпоха принесли с собой проблемы с финансированием. К счастью, мощности завода «Аргон» сохранились, но по технологиям мы сильно отстали от западных, а особенно — от японских компаний. Теперь в рамках холдинга «Композит» ставится задача наверстать упущенное».

Химическая паутина

Чтобы понять, где в черных нитях прячется тот самый хайтек, секреты которого ведущие производители углеволокна хранят как зеницу ока, мы отправились в соседний цех. Там находится лаборатория с оборудованием для производства ПАН-волокон — полупродуктов для изготовления углеволокна. ПАН — это полиакрилнитрил, полимер, получаемый из нефти путем оргсинтеза. ПАН-волокно используется не только в композитной промышленности — из него делают, например, синтетические ковры. Но далеко не каждый производитель таких волокон способен придать им необходимое качество для последующей переработки в углеволокно. Более того, ведущие компании-производители композитных материалов предпочитают делать ПАН-волокно сами для себя, не демонстрируя потенциальным конкурентам даже образцы. Поэтому здесь, в лаборатории научно-исследовательского центра холдинга «Композит», молодые российские ученые пытаются усовершенствовать имеющиеся технологии производства ПАН-волокон и самостоятельно довести их до уровня мировых стандартов, чтобы затем внедрить на предприятиях холдинга.

«Вскоре здесь появится полноценный НИЦ, в котором мы будем изучать и совершенствовать все этапы технологического процесса — от синтеза полимеров до переработки волокон в углеволокно», — говорит Денис Фокин, инженер-исследователь.

Процесс начинается с приготовления полимерного раствора, в котором присутствует полиакрилнитрил, а в качестве растворителя используется диметилсульфоксид (ДМСО). Вязкий прядильный раствор янтарного цвета отфильтровывается с удалением частиц меньше микрона, обезвоздушивается и с помощью шестеренчатого насоса подается в фильеру- экструдер, или, можно сказать, сито с отверстиями диаметром 60−70 мкм. Тончайшие филаменты, или элементарные волокна, попадают в осадительную ванну, где осаждаются с помощью воды. На приемный ролик подается жгутик, состоящий из тысяч филаментов (их число в жгуте может варьироваться от 12 000 до 64 000). Далее его путь лежит в ванну пластификационной вытяжки. Здесь ПАН-волокно вытягивается, приобретая большую прочность за счет ориентации макромолекул. Следующие производственные этапы— промывка (необходимо избавиться от остатков растворителя, который впоследствии помешает получению качественного углеволокна), обработка текстильно-вспомогательными веществами (замасливатели и антистатики нужны, чтобы нить дополнительно не травмировалась при трении и не накапливался статический заряд), далее волокно может подвергаться дополнительной термовытяжке или термофиксации в потоке горячего воздуха. На каждом этапе производства ПАН-волокна присутствуют свои технологические тонкости, без учета которых невозможно получить продукт, удовлетворяющий всем требованиям, предъявляемым к прекурсору (полупродукту). «В нашей стране развитием данных технологий долгое время уделялось мало внимания, — говорит Денис Фокин. — Так, например, на наших предприятиях используется неорганический растворитель — роданистый натрий, в то время как ведущие компании наряду с роданистым натрием широко применяют органические растворители. В настоящее время в нашей компании активно разрабатываются технологии получения ПАН-волокна с использованием органического растворителя ДМСО (диметилсульфоксид), что в перспективе позволит нам выйти на более высокий технологический уровень».

Жар, алмаз и смола

Не менее важны технологические тонкости и на следующем этапе композитного производства — при создании собственно углеволокна. Смысл этого процесса заключается в том, чтобы после обработки в ПАН-волокнах остался минимум примесей, а количество углерода составляло бы 99%. Производство углеволокна включает три основных этапа, каждый из которых связан с воздействием на волокно высоких температур. Первый этап — окисление (при температуре 250°С), второй — карбонизация, в результате которой при температуре около 1500 градусов в волокне образуются графитоподобные структуры, третий — графитизация (при температуре до 3000 градусов из волокон выводятся почти все оставшиеся примеси). В волокне образуются межатомные связи, приближающиеся к кристаллической структуре алмаза, что придает волокну (по направлению вдоль) невероятную прочность. «Наиболее дорогими видами углеволокна считаются очень прочные тонкие нити, состоящие всего из нескольких тысяч филаментов, — говорит Андрей Антонов. — К тонким нитям больше требований при изготовлении. С толстыми жгутами работать легче, и выход больше, но из-за особенностей технологии эти нити не такие прочные».

Итак, готовые углеволокна оказываются в ткацком цеху, однако между тканью и карбоновой деталью стоит еще один этап — предварительной пропитки, или изготовления «препрега» (от англ. prepreg — pre-impregnated, «предварительно пропитанный»).

Интересно, что препреги могут делаться как на основе тканей, так и на основе отдельных волокон, которые укладываются рядом (возможно, с легким нахлестом). Получается нечто вроде однонаправленной ткани, только без поперечных волокон — материал скрепляет связующее вещество на основе эпоксидных смол. И в случае с тканью, и в случае с отдельными волокнами технология создания препрега примерно одинакова — материал из углеволокна выкладывается на лист бумаги, покрытый связующим веществом. Сверху наносится другой слой связующего, поверх которого укладывается еще один бумажный лист. Этот «сэндвич» прокатывается через обогреваемые каландры (систему валиков), которые, подобно асфальтовому катку, придают материалу нужную толщину и плотность. Бумага затем удаляется.

Препрег — готовое сырье для выкладки детали, которая будет состоять из множества слоев пропитанной смолами ткани и подвергнется запеканию в автоклаве. Однако специфика производства заключается в том, что этот финальный этап выполняется не специализированной компанией, производящей композиты, а самим производителем самолетов, кораблей, автомобилей и т. д. «Именно поэтому компаниям, привыкшим работать с металлами, особенно в авиации, порой бывает очень сложно перейти на композиционные материалы, — говорит Андрей Антонов. — Сейчас мы организовываем инжиниринговый центр, который предназначен именно для того, чтобы повышать уровень образованности инженеров этих компаний, помогать с расчетами и проектированием. Надеемся, что это поможет распространению композитных технологий в России».

В статье изложена информация об углеволокне, его особенностях, свойствах и характеристиках. Мы расскажем об истории его создания, а также озвучим познавательные факты. Вы узнаете, как применить углеволокно в быту и строительстве, а также, как своими силами отремонтировать пластик.

Изделия из тканей, волокон, шнуров и лент, выполненных из современных углеводородов, успешно конкурируют по всем эксплуатационным показателям с привычными нам изделиями из стали и бетона . При этом они имеют в десятки, а порой и в сотни раз меньшую толщину и вес. Как можно объяснить человеку с устоявшимися взглядами тот факт, что пропитанный отвердевшей смолой холст толщиной всего 3 мм прочнее по всем показателям, чем техническая фанера 15 мм? Только опытным и демонстративным путём.

Углеволокно — материал будущего, родом из прошлого

Материал был открыт Томасом Эдисоном в 1880 году в рамках исследований нити лампы накаливания. В последние 10 лет, с подачи зарубежных коллег в виде поставок дорогостоящих изделий из углеволокна, отечественные разработчики и производители занялись реанимацией углеводородных проектов, начатых в советский период, по всем направлениям.

Всем известно, что углерод востребован в любой форме, в каждой отрасли промышленности. Это производство буквально всего, что сделано не из металла, стекла, дерева или бетона. Но главным его преимуществом является то, что он способен не только дополнить традиционные материалы, но и заменить их с выгодой для человека и природы.

Видеорепортаж о российском производстве углеволокна

Углеволокно в строительстве

Этот современный материал начинает пользоваться спросом у ремонтников и строителей. Причины этого кроются в свойствах его компонентов:

  1. Высокая прочность нитей, из которых создано полотно.
  2. Исключительная адгезия полимерного связующего (эпоксидного клея).

Комбинация этих свойств даёт высокую эффективность при устройстве наружного армирования железобетонных, кирпичных и деревянных конструкций. Усиленный таким образом элемент получает дополнительно до 65% прочности на изгиб и до 120% прочности на сжатие. Это звучит маловероятно, но проведённые согласно ГОСТ, ТУ и СНиП испытания подтверждают это.

Испытания балок, армированных углеволокном, на видео

Усиленные углеволокном ж/б элементы — испытания на видео

Тому, кто собирается строить каменный дом или бассейн , делать капитальный ремонт, или реставрацию, стоит задуматься о карбоновом усилении. Существенное увеличение прочности позволяет уменьшить объём материала основы. То есть, холст держит огромные нагрузки, главное, было бы на что его наклеить.

Так, армирование композитом увеличивает прочность на сжатие почти вдвое с 280 кН до 520 кН (см. видео испытаний). Это значит, что объём опорного элемента — несущей стены, колонны, столба — можно смело уменьшать на 60-80%. Особое значение это имеет для отдалённых районов, куда затруднена доставка тяжёлого стройматериала.

Вторая основная область применения карбона в строительстве — реставрация несущих каменных элементов. Оклеечным армированием восстанавливают опоры и балки бетонных мостов. Это наиболее ответственные государственные объекты и их надёжность доверяют углеволокну. В частном строительстве нагрузки в десятки раз ниже, а значит, усиление фундамента или углов стен будет с огромным запасом прочности. Это прекрасная альтернатива традиционным способам — подливка фундамента бетоном или установка подобных стен.

Ещё одно полезное свойство композитного материала — его нетоксичность и безвредность после полимеризации. В готовом виде он имеет глянцевую поверхность и не вступает в реакцию с водой. Это будет интересно для того, кто решил возвести бассейн, водоём, кессон, силосную яму, отстойник или каменный септик . Для этого достаточно будет возвести стены в полкирпича с кладочной сеткой и оклеить с обеих сторон углеволокном. Застывший материал будет служить гидроизоляцией. Его монтаж аналогичен устройству армировочной сетки для утеплителя.

Стоимость таких работ будет составлять:

  1. Углеволоконный холст — от 20 до 30 у. е. за 1 м 2 .
  2. Полимерное связующее с отвердителем — от 3 до 5 у. е. по расходу на 1 м 2 .
  3. Услуги по усилению каменных конструкций под ключ в среднем по России стоят 125 у. е. за 1 м 2 . В стоимость входит расчёт, доставка, материал и работа.

Применение углеволокна для ремонта

Свойства холста быть сначала гибким и эластичным, а после пропитки смолой исключительно прочным, можно (и нужно!) использовать и в повседневной жизни. В основном это касается ремонта или замены сломанных пластиковых деталей. С помощью этого материала можно склеить практически всё, а то, что склеить по каким-то причинам нельзя, можно воссоздать, используя испорченную деталь в качестве матрицы.

Ремонт стержня из стеклопластика

Рассмотрим возможность ремонта рукоятки молотка или топора при помощи углеволоконного рукава. Большинство полупрофессиональных ударных инструментов имеют рукояти из материала на основе стекловолокна — того же, что используют для производства высококачественных хоккейных клюшек.

Для ремонта потребуется:

  1. Инструмент — тиски, ротационная шлифмашина с наждачной бумагой, направляющая струбцина, строительный фен, кисти.
  2. Материал — рукав из углеволокна или холста, высокопрочный двухкомпонентный клей, полимерная смола и отвердитель. Всего клеящей смеси потребуется около 50 мл.
  3. Защитные средства — очки, респиратор, резиновые перчатки.

Порядок работы:

  1. Зачистить края разлома шлифмашиной, сохраняя место контакта.
  2. Зажать в тисках одну часть и выставить на струбцине вторую, примерив по плоскости.
  3. Нанести на контактные поверхности (разлом) клей и соединить две части на струбцине. Обмазать клеем место разлома. Тщательно проверить соосность обеих частей. Время выдержки — 6-8 часов (по инструкции).
  4. Снять струбцину и зачистить место соединения, сделав заглубление в тело стержня на 1-2 мм.
  5. Сделать разметку. Т. к. оклейка рукавом будет производиться в два этапа, верхний слой перекроет нижний. От оси соединения отложить для первого слоя — 3,5 см, для второго — 6 см в каждую сторону. Отрезать два куска рукава по размерам.
  6. Сделать полимерный раствор из смолы и отвердителя в пропорциях согласно инструкции и обильно нанести его на место соединения по меньшей разметке.
  7. Завести отрезок рукава к месту приклеивания и аккуратно уложить его на клей и обжать руками.
  8. Затем нанести ещё один слой клея и завести второй (больший) отрезок рукава. Прижать его аналогичным образом. Пропитать весь участок клеем.
  9. Создать временный зажим — приложить с двух сторон полосы упругого материала, замотать скотчем и сдавить струбцинами (не очень туго). Время выдержки — 6-8 часов.
  10. 1Зачистить место соединения шлифмашиной и довести вручную.
  11. Технически изделие готово, его можно использовать с обычной нагрузкой через 12 часов. Отремонтированное изделие можно окрасить.

Ремонт рукоятки из стеклопластика на видео

Технологию ремонта предлагает фирма SRS (значит, речь идёт о профессиональном спорте — нетрудно представить, какие нагрузки выдерживает изделие после ремонта).

С помощью углеволокна указанным способом можно также починить вещи, которые ранее было принято заменять:

  1. Ножки мебели.
  2. Ручки пылесоса, зонта или ножа.
  3. Корпуса бытовой и офисной техники, инструмента.
  4. Оправы очков (понадобится карбоновая нить или лента).
  5. Любую неметаллическую деталь автомобиля, мототехники, велосипеда — от бампера до дверной ручки.
  6. Пластиковое окно или подоконник и многое другое.

Безусловно, весь спектр достоинств и возможностей передового многофункционального материала невозможно отобразить в одной статье. Домашнему мастеру достаточно знать о нём одно — для того, кто имеет в арсенале холст и ленту из углеволокна и эпоксидные компоненты, проблемы ломаного пластика не существует.

Свойства углепластиков зависят от свойств углеродных во­локон, которые в свою очередь определяются условиями пиролиза органических волокон (гидратцеллюлозных, полиакрилонитрильных, волокон из мезофазных пеков), используемых в настоящее время в каче­стве сырья для изготовления углеродных волокон.

Механические свойства. Модуль упругости при растяжении (вдоль волокон) высококачественных углеродных волокон высокопрочного типа (на основе ПАН) составляет 200 -- 250 ГПа, высокомодульного типа (на основе ПАН) - около 400 ГПа, а углеродных волокон на основе жидкокристаллических пеков: 400 - 700 ГПа. При одной и той же температуре прогрева углеродные волокна на основе жидкокристал­лических пеков имеют больший модуль упругости при растяжении, чем волокна на основе ПАН . Модуль упругости при растяжении поперек волокон (модуль жест­кости при изгибе) снижается с ростом модуля упругости при растяжении вдоль волокон. Для углеродных волокон на основе ПАН он выше, чем для волокон на основе жидкокристаллических пеков. На поперечный модуль упругости также влияет ориентация атомных плоскостей в сечении уг­леродного волокна. Проч­ность при растяжении вдоль оси высокопрочных углеродных волокон на основе ПАН составляет 3,0-3,5 ГПа, волокон с высоким удлинением ~ 4,5 ГПа и высокомодульных волокон - 2,0-2,5 ГПа. Высокотемпера­турная обработка волокон второго типа позволяет получить высокомо­дульные волокна с прочностью при растяжении приблизительно 3 ГПа. Прочность волокон на основе жидкокристаллических пеков обычно равна 2,0 ГПа. Теоретическое значение прочности при растяжении кристаллов гра­фита в направлении атомных плоскостей решетки составляет 180 ГПа. Измерен­ная экспериментально прочность при растяжении углеродных волокон вы­сокопрочного и высокомодульного типа на основе ПАН на участке дли­ной 0,1 мм равна 9-10 ГПа.. Эта величина составляет 1/20 теоре­тического значения и 1/2 прочности нитевидных монокристаллов гра­фита. Для углеродных волокон на основе жидкокристаллических пеков измеренная аналогичным образом прочность равна 7 ГПа. В таблицах 17.1, 17.2 приведены показатели механических свойств наиболее распространенных углеродных во­локон .

Мень­шая прочность промышленно производимых углеродных волокон связана с тем, что они не являются монокристаллами и в их микроско­пической структуре имеют место значительные отклонения от регуляр­ности. Свойства углеродных волокон можно значительно улучшить вплоть до разрушающего удлинения 2% и прочности 5 ГПа и выше .

Таблица 17.1 - Механические свойства УВ .

Таблица 17.2 - Физико-механические свойства углеродных волокон .

Как видно из таблиц, УВ обладают низкой плотностью и высокими прочностью при растяжении и модулем упругости. Следовательно, углеродные волокна имеют высо­кую прочность и удельный модуль упругости. Наиболее характерной осо­бенностью углеродных волокон является их высокий удельный модуль упругости. Это позволяет с успехом использовать углеродные волокна для армирования материалов конструкционного назначения. Сравнивая высокомодульные волокна с низкомо­дульными сходного химического состава, следует от­метить, что с увеличением модуля упругости и плотности углеродных во­локон уменьшаются объем закрытых пор, средний диаметр и удельная поверхность, улучшается его электропроводность.

Электрические свойства. Возрастание модуля упругости по мере уменьшения угла тек­стуры означает, что структура углеродного волокна приближает­ся к структуре графита, обладающего металлической проводимо­стью в направлении гексагонального слоя . Углеродные во­локна, полу­ченные при температуре не ниже 1000°С, обладают высокой элект­ропроводностью (более 102 Ом -1 -см -1). Варьируя модуль упругости, а следовательно, и элект­рические свойства углеродного наполнителя, можно регулировать электрические свойства композиционного материала. В процессе превращения органических волокон в УВ осуществляется пе­реход через все зоны проводимости . Исходные волокна являются диэлектри­ками, в процессе карбонизации электрическое сопротивление резко снижается, затем с повышением температуры обработки выше 1000 о С оно, хотя и продолжает умень­шаться, но менее интенсивно . Карбонизованные волокна по типу проводимости относятся к полупроводникам, а графитированные охватывают область от по­лупроводников до проводников, приближаясь по мере повышения температуры обработки к последним. Для углеродных волокон температурная зависимость проводимости определяется конечной температурой их обработки, а следова­тельно, концентрацией электронов и размерами кристаллитов.

Следует отметить , что чем выше температура карбонизации, тем меньше температурный коэффициент электропроводности. Углеродные волокна обладают дырочной и электронной проводимостью. При повышении температурной обработки, сопровождающейся совершенствованием струк­туры и увеличением числа электронов, запретная зона проводи­мости уменьшается, поэтому возрастает электропроводность, которая для волокон, обработанных при высокой температуре, по абсолютно­му значению приближается к электропроводности проводников.

Термические свойства. Одним из проявлений особенностей анизотропной структуры высокомодульных углеродных во­локон является отрицательный коэффициент термического линейного расширения вдоль оси волокна, по­вышающий уровень остаточных напряжений в высокомодульных волокнитах . У волокна с большим модулем упругости коэффици­ент выше по абсолютной величине и в более широком интервале температур имеет отрицательное значение. Так, у углеродных во­локон, изготовленных из ПАН-волокна (рисунок 17.11), максимальное (по аб­солютной величине) значение коэффициента наблюдается при 0°С, а при повышении температуры его знак меняется на обрат­ный (при температуре выше 360°С у волокна с Е = 380 ГПа и выше 220 °С у волокна с Е = 280 ГПа. Следует отме­тить, что кривая на рисунке 3.11 хорошо совпадает с аналогичной зависимостью коэффициента термического расширения решетки пиролитического графита вдоль оси а .

Благодаря высокой энергии связи С-С углеродного во­локна оста­ются в твердом состоянии при очень высоких температурах, при­давая композиционному материалу высокую температуростойкость. Кратковременная прочность при растяжении высокомодуль­ного волокна, содержащего 99,7 вес. % углерода, остается практи­чески неизменной в нейтральной и восстановительной средах до 2200 °С. Не изменяется она и при низких температу­рах. В окислительной среде прочность углеродного во­локна сохраняет­ся неизменной до 450°С. Поверхность волокна предохраняют от окисления кислородостойкими защитными покрытиями из туго­плавких соединении или термостойких связующих; наибольшее распространение получили пиролитические покрытия.

Рисунок 17.11 - Зависимость коэффициента термического линейного расширения

вдоль волокна для углеродных во­локон с модулем упругости 380 (1)

и 280 ГПа (2) от температуры..

Химические свойства . Углеродные во­локна отличаются от других наполнителей химической инертностью . Химическая стойкость углеродных во­локон зависит от температу­ры конечной обработки, структуры и поверхности волокна, типа и чистоты ис­ходного сырья. После выдержки в течение 257 суток в агрессивных жидкостях высокомодульных волокон, полученных из ПАН-волокна, при комнатной температуре заметное снижение прочности при растяжении наблюдается лишь при действии ортофосфорной, азотной и серной кислот (таблица 17.3).

Таблица 17.3 - Химическая стойкость в агрессивных средах высокомодульного УВ на основе ПАН (продолжительность воздействия 257 суток) .

Модуль упругости образцов изменяется только под влиянием 50%-ного раствора азотной кислоты. Проч­ность стеклянного волокна щелочного состава после выдержки в течение 240 ч в 5%-ных растворах серной или азотной кислот уменьшается на 41 и 39 % соответственно. При повышении тем­пературы стойкость углеродного волокна к агрессивным средам уменьшается.

Особенно легко оно окисляется в растворах азотной кислоты. Раствор гидрохлори­да натрия окисляет углерод, вследствие чего уменьшается диаметр волокна, а его механические свойства даже несколько улучшаются .

По степени активности по отношению к высокомодуль­ному углеродному во­локну, полученному из ПАН-волокна, кислоты мож­но расположить в следующий ряд: НNО 3 >Н 2 S0 4 >Н з Р0 4 >НС1. Уксусная и муравьиная кислоты и растворы щелочей любых концентраций и при любой температуре не разрушают углеродные волокна . Химическая стойкость углеродных во­локон обеспечивает стабильность свойств композици­онных материалов на их основе .

Дефекты и смачивание. Пиролиз органических волокон сопровождается увеличением их пористости . Высокомодульные углеродные во­локна имеют поры вытяну­той формы, отличаются от низкомодульных ориентацией бороздок и трещин вдоль оси волокна и их меньшей концентрацией на по­верхности. По-видимому , при вытяжке происходит сглаживание части поверхностных дефектов, особенно эффективное при высо­котемпературной обработке волокон. Поры на поверхности углеродных во­локон имеют разные размеры. Крупные поры диаметром несколько сотен ангстрем при формовании композиционного мате­риала заполняются связующим, при этом прочность сцепления свя­зующего с наполнителем повышается. Большая часть пор на по­верхности волокон имеет диаметр несколько десятков ангстрем. В столь малые полости могут проникать только низкомолекуляр­ные компоненты связующего, и у поверхности наполнителя проис­ходит молекулярно-ситовое перераспределение связующего, изме­няющее его состав.

Смачиваемость волокон применяемыми для получения углепластиков, связующими, оказывает большое влияние на их свойства. В отличие от стеклянных волокон поверхностная энергия углеродных во­локон очень низка, поэтому волокна плохо смачиваются связующими, а углепластики характеризуются низкой прочностью сцепления между наполнителем и связующим. Прочность сцепления волокон со связующим возрастает, если на поверхность волокон предварительно наносят тонкий слой мономера, хорошо смачивающего ее и заполняющего все поры. В результате полимеризации мономера волокно покрывается тонким слоем полимера - протектора, “пломбирующего” его поверхностные дефекты. Затем наполнитель совмещают с выбранным связующим, формуют изделие и отверждают пластик по стандартному режиму.

В настоящее время предложено еще несколько способов повышения прочности сцепления углеродного во­локна со связующим, эффективность которых оценивают по возрастанию прочности композиционного материала при сдвиге :

Снятие пленки замасливателя с поверхности углеродных во­локон после окончания текстильной переработки;

Травление поверхности углеродных во­локон окислителями;

Аппретирование углеродных во­локон;

Выращивание на поверхности волокон нитевидных кристаллов, обладающих высоким сопротивлением срезу (ворсеризация или вискеризация).

В некоторых случаях применяют последовательно несколько способов обработки.

Ворсеризация высокомодульных углеродных волокон является наиболее радикальным методом повышения прочности при сдвиге углепластиков. Пропорционально объемному со­держанию нитевидных кристаллов на волокне увеличивается не только прочность при сдвиге, но и прочность при сжатии и изгибе в поперечном направлении вследствие дополнительного упрочнения матрицы кристаллами, обладающими вы­сокими механическими показателями (например, прочность ните­видных кристаллов?-SiC составляет 7-20 ГПа при мо­дуле упругости около 50 ГПа). При высоком содержании нитевидных кристаллов на волокне (более 4-7%) прочностные и упругие свойства пластика ухудшаются. В ряде случаев снижение прочности пластика связано с потерей прочности углеродного волокна при ворсеризации. В таблице 17.4 показано, как зависят свойства углепластиков от способа подготовки поверхности углеродного волокна.

Таблица 17.4 - Влияние различных видов подготовки поверхности высокомодульного волокна на свойства однонаправленного эпоксидного углепластика .

Способность углеродных во­локон, содержащих одинаковое количество углерода (не менее 99 вес.%), к ворсеризации из газовой фазы возрастает с уменьшением стойкости его к окислению, которая пропорциональна концентрации поверхностных дефектов .

Физические свойства углеродных волокон зависят от их предыстории (условий карбонизации и графитации), а некоторые пока­затели и от природы и качества сырья . Многие свойства углерод­ных волокон определяется конечной температурой обработки, но, кроме этого, существенный вклад могут вносить другие факторы. В таблице 17.5 приведены наиболее характерные физические свойства углеродных волокон.