Самодельные измерительные приборы. RLC и ESR метр, или прибор для измерения конденсаторов, индуктивностей и низкоомных резисторов Rcl измеритель цифровой своими руками

Огромная подборка схем, руководств, инструкций и другой документации на различные виды измерительной техники заводского изготовления: мультиметры, осциллографы, анализаторы спектра, аттенюаторы, генераторы, измерители R-L-C, АЧХ, нелинейных искажений, сопротивлений, частотомеры, калибраторы и многое другое измерительное оборудование.

В процессе эксплуатации внутри оксидных конденсаторов постоянно происходят электрохимические процессы, разрушающие место соединения вывода с обкладками. И из-за этого появляется переходное сопротивление, достигающее иногда десятков Ом. Токи Заряда и разряда вызывают нагрев этого места, что еще больше ускоряет процесс разрушения. Еще одной частой причиной выхода из строя электролитических конденсаторов является "высыхание", электролита. Чтоб уметь отбраковывать такие конденсаторы предлагаем радиолюбителям собрать эту несложную схему

Идентификация и проверка стабилитронов оказывается несколько сложнее чем проверка диодов, т.к для этого нужен источник напряжения, превышающий напряжение стабилизации.

С помощью этой самодельной приставки вы сможете одновременно наблюдать на экране однолучевого осциллографа сразу за восемью низкочастотными или импульсными процессами. Максимальная частота входных сигналов не должна превышать 1 МГц. По амплитуде сигналы должны не сильно отличаться, по крайней мере, не должно быть более 3-5-кратного отличия.

Устройство расчитано на проверку почти всех отечественных цифровых интегральных микросхем. Им можно проверить микросхемы серий К155, К158, К131, К133, К531, К533, К555, КР1531, КР1533, К176, К511, К561, К1109 и многие другие

Помимо измерения емкости, эту приставку можно использовать для измерения Uстаб у стабилитронов и проверки полупроводниковых приборов, транзисторов, диодов. Кроме того можно проверять высоковольтные конденсаторы на токи утечки, что весьма помогло мне при налаживание силового инвертора к одному медицинскому прибору

Эта приставка к частотомеру используется для оценки и измерения индуктивности в диапазоне от 0,2 мкГн до 4 Гн. А если из схемы исключить конденсатор С1 то при подключении на вход приставки катушки с конденсатором, на выходе будет резонансная частота. Кроме того, благодаря малому значению напряжения на контуре можно оценивать индуктивность катушки непосредственно в схеме, без демонтажа, я думаю многие ремонтники оценят эту возможность.

В интернете много разных схем цифровых термометров, но мы выбрали те которые отличается своей простотой, малым количеством радиоэлементов и надежностью, а пугаться того, что она собрана на микроконтроллере не стоит, т.к его очень легко запрограммировать.

Одну из схем самодельного индикатора температуры со светодиодным индикатором на датчике LM35 можно использовать для визуальной индикации плюсовых значений температуры внутри холодильника и двигателя автомобиля, а также воды в аквариуме или бассейне и т.п. Индикация выполнена на десяти обычных светодиодах подключенных к специализированной микросхеме LM3914 которая используется для включения индикаторов с линейной шкалой, и все внутренние сопротивления ее делителя обладают одинаковыми номиналами

Если перед вами встанет вопрос как измерить частоту вращения двигателя от стиральной машины. Мы подскажем простой ответ. Конечно можно собрать простой стробоскоп, но существует и более грамотная идея, например использованием датчика Холла

Две очень простые схемы часов на микроконтроллере PIC и AVR. Основа первой схемы микроконтроллер AVR Attiny2313, а второй PIC16F628A

Итак, хочу сегодня рассмотреть очередной проект на микроконтроллерах, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровой вольтметр на микроконтроллере. Схема его была позаимствована из журнала радио за 2010 год и может быть с легкостью переделана под амперметр.

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

Рассмотрена схема измерителя индуктивности катушек и емкости конденсаторов, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек.

Думаю большинству понятно, что звучание системы во многом определяется различным уровнем сигнала на ее отдельных участках. Контролируя эти места, мы можем оценить динамику работы различных функциональных узлов системы: получить косвенные данные о коэффициенте усиления, вносимых искажениях и т.п. Кроме того, результирующий сигнал просто не всегда можно прослушать, поэтому и, применяются различного рода индикаторы уровня.

В электронных конструкциях и системах встречаются неисправности, которые возникают достаточно редко и их очень сложно вычислить. Предлагаемое самодельное измерительное устройство используется для поиска возможных контактных проблем, а также дает возможность проверять состояние кабелей и отдельных жил в них.

Основой этой схемы является микроконтроллер AVR ATmega32. ЖК дисплей с разрешением 128 х 64 точек. Схема осциллографа на микроконтроллере предельно проста. Но есть один существенный минус - это достаточно низкая частота измеряемого сигнала, всего лишь 5 кГц.

Эта приставка здорово облегчит жизнь радиолюбителя, в случае если у него появится необходимость в намотке самодельной катушки индуктивности, или для определения неизвестных параметров катушки в какой либо аппаратуре.

Предлагаем вам повторить электронную часть схемы весов на микроконтроллере с тензодатчиком, прошивка и чертеж печатной платы к радиолюбительской разработке прилагаеться.

Самодельный измерительный тестер обладает следующими Функциональными возможностями: измерение частоты в диапазоне от 0.1 до 15000000 Гц с возможностью изменения времени измерения и отображением значение частоты и длительности на цифровом экране. Наличие опции генератора с возможностью регулировки частоты во всем диапазоне от 1-100 Гц и выводом результатов на дисплей. Наличие опции осциллограф с возможностью визуализации формы сигнала и измерения его амплитудного значения. Функция измерения емкости, сопротивления, а также напряжения в режиме осциллографа.

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Устройство используется для измерения температуры и относительной влажности воздуха. В качестве первичного преобразователя взят датчик влажности и температуры DHT-11. Самодельный измерительный прибор можно использовать в складских и жилых помещениях для мониторинга температуры и влажности, при условии, что не требуется высокая точность результатов измерений.

В основном для измерения температуры применяются температурные датчики. Они имеют различные параметры, стоимость и формы исполнения. Но у них имеется один большой минус, ограничивающий практику их использования в некоторых местах с большой температурой среды объекта измерения с температурой выше +125 градусов по Цельсию. В этих случаях намного выгоднее использовать термопары.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.

Для измерения такой электротехнической величины, как сопротивление используется измерительный прибор называемый Омметр. Приборы, измеряющие только одно сопротивление, в радиолюбительской практике используются достаточно редко. Основная масса пользуется типовым мультиметров в режиме измерения сопротивления. В рамках данной темы рассмотрим простую схему Омметра из журнала Радио и еще более простую на плате Arduino.


Продолжу описание программы LIMP из пакета фирмы Arta Software . С ее помощью можно определять номиналы сопротивлений, индуктивностей, емкостей. Для этого достаточно компьютера, бесплатной программы и аппаратной части из одного резистора и нескольких шнуров.

Конечно, этот измеритель не может заменить специализированные приборы ни по удобству, ни по точности измерений, но покупать дорогостоящий прибор ради нескольких измерений не всегда целесообразно. Предлагаемый инструмент чисто радиолюбительский - измерения медленные и требуют определенной работы мозга и рук, зато бесплатно и своими руками.

Аппаратная часть

Из деталей надо 2 разъема 3,5 мм для звуковой карты с экранированными проводами, резистор примерно 100 Ом, переключатель с одной группой контактов (или аналог. кнопка) любой, два крокодила или зажима.

Мне самому было интересно покопаться. ARTA пишет, что для точности желательно, чтобы Z было менее 100 Ом, гораздо меньше, чем входное сопротивление звуковой карты (якобы оно примерно 20 кОм). Думаю, что очень низкое Z при измерении очень больших емкостей, тоже ухудшает точность, но на практике мало интересно - емкость 20000 мкФ или 22000 мкФ, важнее знать, что эта емкость есть, не высохла, а если есть нужда в подборе одинаковых емкостей, то абсолютное значение тоже не так важно. Еще раз напоминаю - смотрите результат при фазе для конденсаторов около -90, а индуктивностей +90. Кстати, у конденсаторов с плохой термозависимостью видно как изменяется Z от тепла пальцев.

Можно проверить древние емкости из запасов (ESR не видно, а жаль), падение емкости из-за высыхания или обрыва, видно сразу.
Нет слов, специальные приборы в 1000 раз лучше, но они денег стоят и место занимают.

Измерения сопротивлений

Сначала я даже хотел опустить этот пункт - дешевые цифровые китайские тестеры есть у всех, но подумав, нашел случаи, когда данный метод может быть полезен.
Это измерение малых сопротивлений - до 0,1 Ом включительно. Сначала надо откалибровать прибор и замкнуть его щупы. С длинным шнуром у меня получилось 0,24 Ом. Эту величину будем вычитать из всех измерений низкоомных резисторов. У меня есть горсть резисторов С5-16МВ-5 на 3,9 Ом с точностью 1%.


Все проверенные резисторы дали такой результат. 4,14 – 0,24 = 3,9
Для проверки была измерена горсть других низкоомных резисторов, без замечаний. Самым низкоомным был на 0,51 Ом +- 5%. Измеренное значение 0,5 Ом. К сожалению, не смог найти в своих запасах 0,1 Ом, но я уверен, что и с ними не было бы проблем, нужны только зажимы с хорошими контактами.
Кроме измерения сопротивления низкоомных резисторов, интерес, особенно для фильтров акустических систем, представляет их индуктивность. Они же проволочные, намотаны в катушку. Насколько же существенна их индуктивность? Я проверял в основном низкоомные (до 20 Ом) резисторы (в акустику и усилители высокоомные не ставят) типов С5-16МВ, С5-37В, С5-47В, ПЭВР-25, С5-35В. Их индуктивность была в диапазоне 2…6 микроГенри. При измерениях резисторов в сотни Ом, их индуктивность была на порядок выше.

Измерения индуктивностей

Плавно переходим к индуктивностям. У меня сейчас нет точных индуктивностей, поэтому я просто проверил качественную, но не количественную работоспособность метода.


Это измерения дросселя ДМ-0,1 на 30 мкГн, получилось правдоподобно.


Вот дроссель из импульсного блока питания. Тоже похоже на правду. За точность не ручаюсь - здесь есть место для исследований.

Измерения емкостей

Самая интересная часть, есть непонятное, но результаты очень интересные. Диапазон измерений от 0,1 мкФ до 100 000 мкФ. Точность - несколько процентов. Более-менее терпимые результаты получаются от 0,01 мкФ, но измерения на низких частотах длинным шнуром с большой емкостью, малоцелесообразны. Я исходил из того, что интерес представляют емкости порядка долей-единиц мкФ для фильтров акустических систем и регуляторов тембра, разделительных конденсаторов УНЧ. Была надежда увидеть ESR (не оправдалась). Поскольку прецизионных емкостей я у себя не нашел, пришлось использовать статистический метод и здравый смысл. Сначала я сделал и хотел представить большую таблицу, но потом очевидная истина дошла и до меня, для вас только результаты.


Это конденсатор 0,15 MKP X2. На какой частоте измерять? Arta освещает это невнятно. Говорят, что надо измерять при импедансе менее 100 Ом (одна клетка на графике слева 800 Ом)…
На 200 Гц получается 0,18 мкФ, на 20 кГц - 0,1 мкФ. Из основ электротехники известно, что ток в емкости опережает напряжение (-90 град), в индуктивности - наоборот (+90 град), поэтому руководствуемся серой кривой и числом сдвига фазы справа. Лучше, если сдвиг будет близок к 90 град. К сожалению, из-за ограниченного частотного диапазона, это не всегда получается, кроме того, нередко около 20 кГц сдвиг фазы уменьшается, не будем лезть в эту область!


Вот и пример. Это неполярный оксидный конденсатор 2,2 мкФ на 15 В. Есть сильное подозрение в его низком качестве и непригодности для аудиофилов. У неэлектролитических конденсаторов на большее напряжение фазовый график другой. Здесь же наиболее достоверные результаты в области 0,5…1 кГц.


Конденсатор 1 мкФ К10-47В на 50 В ТКЕ Н30. Достоверный и стабильный результат в диапазоне частот 1…20 кГц при фазовом сдвиге 85…90 град.
Любопытство потянуло меня посмотреть: а что будет, если измерять оксидные (электролитические) конденсаторы? Оказалось, что измерять можно! Результат абсолютно не зависит от полярности подключения, я измерил даже 4 банки по 10 000 мкФ соединенные параллельно и получил достоверный результат. О достоверности я могу судить потому, что до этого измерил десятки конденсаторов от 1 до 15 000 мкФ.


Получилось 44 миллиФарады. Обратите внимание на фазовую характеристику в области нескольких кГц, она приобретает характер индуктивности. Что это - несовершенство инструмента или действительно на таких частотах емкость обкладок работает хуже, а индуктивность рулона обмотки говорит все громче? Параллельное подключение небольшой пленочной емкости на график не повлияло.
В силу того, что загрузка графики в пост ограничена, я привожу минимум примеров, поэтому просто повторю, что измерять надо при максимально «правильной» фазе (при переходе через 0 вы из емкости получите «индуктивность» и наоборот).


Бывает и такое. Это одна из старых выпаянных оксидных емкостей. Явно, ей место на свалке. Представляете, что такая емкость сделает со звуком?!
Можно попасть и в такую ловушку.
  • 08.10.2014

    Стереофонический регулятор громкости, баланса и тембра на ТСА5550 имеет следующие параметры: Малые нелинейные искажения не более 0,1% Напряжение питания 10-16В (12В номинальное) Ток потребления 15…30мА Входное напряжение 0,5В (коэффициент усиления при напряжении питания 12В единица) Диапазон регулировки тембра -14…+14дБ Диапазон регулировки баланса 3дБ Разница между каналами 45дБ Отношение сигнал шум …

  • 29.09.2014

    Принципиальная схема передатчика показана на рис.1. Передатчик (27МГц) выдает мощность около 0,5Вт. В качестве антенны используется провод 1 м длиной. Передатчик состоит из 3-х каскадов — задающего генератора (VT1), усилителя мощности (VT2) и манипулятора (VT3). Частота задающего генератора задается кв. резонатором Q1 на частоту 27 МГц. Нагружен генератор на контур …

  • 28.09.2014

    Параметры усилителя: Суммарный диапазон воспроизводимых частот 12…20000Гц Максимальная выходная мощность СЧ-ВЧ каналов(Rн=2,7Ом, Uп=14В) 2*12Вт Максимальная выходная мощность НЧ канала(Rн=4Ом, Uп=14В) 24Вт Номинальная мощность СЧ-ВЧ каналов при КНИ 0,2% 2*8Вт Номинальная мощность НЧ канала при КНИ 0,2% 14Вт Максимальный ток потребления 8 А В данной схеме А1 — ВЧ-СЧ усилитель, а …

  • 30.09.2014

    УКВ-приемник работает в диапазоне 64-108МГц. Схема приемника основана на 2-х микросхемах: К174ХА34 и ВА5386, дополнительно в схеме присутствуют 17 конденсаторов и всего 2-а резистора. Колебательный контур один, гетеродинный. На А1 выполнен супергетеродинный УКВ-ЧМ без УНЧ. Сигнал от антенны поступает через С1 на вход ПЧ микросхемы А1(вывод12). Настройка на станцию производится …

В последнее время выход из стоя электролитических конденсаторов стал одной из основных причин поломок радиоаппаратуры. Но для правильной диагностики не всегда достаточно иметь только измеритель емкости, поэтому сегодня мы поговорим об еще одном параметре - ESR.
Что это, на что влияет и чем измеряют, я попробую рассказать в этом обзоре.

Для начала скажу, что этот обзор будет кардинально отличаться от предыдущего, хотя оба этих обзора об измерительных приборах радиолюбителя.
1. В этот раз не конструктор, а скорее «полуфабрикат»
2. Паять в этом обзоре я ничего не буду.
3. Схемы в этом обзоре также не будет, думаю что к концу обзора будет понятно, почему.
4. Данный прибор очень узконаправленный, в отличии от предыдущего «многостаночника».
5. Если о предыдущем приборе знало очень много людей, то этот почти никому неизвестен.
6. Обзор будет маленьким

Для начала, как всегда, упаковка.

К упаковке прибора претензий не возникло, простенько и компактно.

Комплектация совсем спартанская, в комплекте только сам прибор и инструкция, щупы и батарейка в комплект не входят.

Инструкция также не блещет информативностью, общие фразы и картинки.

Технические характеристики прибора, указанные в инструкции.

Ну и более понятным языком.
Сопротивление
Диапазон - 0,01 - 20 Ом
Точность - 1% + 2 знака.

Эквивалентное последовательное сопротивление (ESR)
Диапазон - 0,01 - 20 Ом, работает в диапазоне конденсаторов от 0.1мкФ
Точность - 2% + 2 знака

Емкость
Диапазон - 0,1мкФ - 1000мкФ (3-1000 мкФ измеряются на частоте 3КГц, 0.1-3мкФ - 72КГц)
Точность - зависит от частоты измерения, но составляет около 2% ± 10 знаков

Индуктивность
Диапазон - 0-60 мкГн на частоте 72КГц и 0-1200 мкГн на частоте 3КГц.
Точность - 2% + 2 знака.

Для начала я расскажу что же это такое - ESR.
Многие довольно часто слышали слово - конденсатор, а некоторые даже их видели:)
Если не видели, то на фото ниже наиболее часто встречающиеся в технике представители.

В реальной жизни эквивалентная схема конденсатора выглядит примерно так, как показано на рисунке ниже.
На картинке показаны -
C - эквивалентная емкость, r - сопротивление утечки, R - эквивалентное последовательное сопротивление, L - эквивалентная индуктивность.

А если упрощенно, то
Эквивалентная емкость - это конденсатор в «чистом» виде, т.е. без недостатков.
Сопротивление утечки - это то сопротивление, которое разряжает конденсатор помимо внешних цепей. Если провести аналогию с бочкой воды, то это естественное испарение. Оно может быть больше, может быть меньше, но оно будет всегда.
Эквивалентная индуктивность - Можно сказать что это дроссель, включенный последовательно с конденсатором. Например это обкладки конденсатора свернутые в рулон. Этот параметр мешает конденсатору при работе на высоких частотах и чем выше частота, тем больше влияние.
Эквивалентное последовательное сопротивление, ESR - Вот и тот параметр, который мы и рассматриваем.
Его можно представить как резистор, включенный последовательно с идеальным конденсатором.
Это сопротивление выводов, обкладок, физические ограничения и т.д.
В самых дешевых конденсаторах это сопротивление обычно выше, в более дорогих LowESR ниже, а ведь есть еще Ultra LowESR.
А если просто (но очень утрированно), то это все равно, что набирать воду в бочку через короткий и толстый шланг или через тонкий и длинный. Заправится бочка в любом случае, но чем тоньше шланг, тем это будет происходить дольше и с большими потерями во времени.

Из-за этого сопротивления невозможно конденсатор мгновенно разрядить или зарядить, кроме того при работе на высоких частотах именно это сопротивление греет конденсатор.
Но самое плохое то, что обычный измеритель емкости его не измеряет.
У меня часто были случаи, когда при измерении плохого конденсатора прибор показывал нормальную емкость (и даже выше), но устройство не работало. При измерении ESR-метром сразу становилось понятно, что внутреннее сопротивление у него очень высокое и работать нормально он не может (по крайней мере там, где стоял до этого).
Некоторые наверняка видели вспухшие конденсаторы. Если отсечь случаи, когда конденсаторы пухли просто лежа на полке, то остальное будет являться следствием повышения внутреннего сопротивления. При работе конденсатора постепенно увеличивается внутреннее сопротивление, происходит это от неправильного режима работы или от перегрева.
Чем больше внутреннее сопротивление, тем больше начинает греться конденсатор изнутри, чем больше нагрев изнутри, тем больше растет сопротивление. В итоге электролит начинает «кипеть» и из-за повышения внутреннего давления конденсатор вспухает.

Но вспухает конденсатор не всегда, иногда на вид он абсолютно нормальный, емкость в порядке, а нормально не работает.
Подключаешь его к ESR метру, а у него вместо привычных 20-30мОм уже 1-2 Ома.
Я пользуюсь в работе самодельным ESR метром, собранным много лет назад по схеме с форума ProRadio, автор конструкции - Go.
Этот ESR метр попадается в моих обзора довольно часто и меня часто спрашивают о нем, но когда я увидел в новых поступлениях магазина уже готовый прибор, то решил заказать его для пробы.
Еще подогревало интерес то, что информации по этому прибору я нигде не нашел, ну тем интереснее:)

Внешне прибор выглядит как «полуфабрикат», т.е. собранная конструкция, но без корпуса.
Правда для удобства производитель установил всю эту конструкцию на такие вот пластиковые «ножки», даже гаечки пластиковые:)

С правого торца прибора расположены клеммы для подключения измеряемого элемента.
К сожалению схема подключения двухпроводная, а значит что чем длиннее будут провода щупов (если их использовать) тем больше будет погрешность показаний.
В более правильных конструкциях используется четырехпроводное подключение, по одной паре конденсатор заряжается/разряжается, по другой происходит измерение напряжения на конденсаторе. в таком варианте провода можно сделать хоть метр длиной, глобальной разницы в показаниях не будет.
Также рядом с клеммами находятся два контакта печатной платы, они используются при калибровке прибора (это я понял уже потом).

Снизу предусмотрено место для установки батареи питания типа 6F22 9 Вольт (Крона).

Прибор также может питаться и от внешнего источника питания, подключаемого посредством разъема MicroUSB. при подключении питания к этому разъему батарея отключается автоматически. при частом использовании я бы советовал питать прибор от USB разъема, так как батареи разражаются довольно ощутимо.
На фото также видно, что стяжка, при помощи которой крепится батарея, многоразовая. Замок стяжки имеет язычок, при нажатии на который ее можно открыть.

В собранном виде конструкция выглядит как то так.

Включается и управляется прибор всего одной кнопкой.
Включение - нажатие дольше 1 сек.
Нажатие в рабочем режиме переключает прибор между измерениями L и С-ESR.
Выключение - нажатие кнопки более чем 2 секунды.

При включении прибора высвечивается сначала название и версия прошивки, затем идет надпись, предупреждающая о том, что конденсаторы надо обязательно разрядить перед проверкой.
При удержании кнопки более двух секунд высвечивается надпись - Выключение питания и при отпускании кнопки прибор отключается.

Как я выше писал, прибор имеет два рабочих режима.
1. измерение индуктивности
2. измерение емкости, сопротивления (или ESR).
В обоих режима на экране отображается напряжение питания прибора.

Естественно посмотрим что из себя представляет начинка этого прибора.
На вид она заметно сложнее чем у предыдущего тестера транзисторов, что косвенно говорит либо о непродуманности схемы либо о лучших характеристиках, мне кажется что в данном случае скорее второй вариант.

Ну дисплей особо описывать смысла нет, классический 1602 вариант. Единственно что удивило - черный цвет текстолита.

Общее фото печатной платы я сделал в двух вариантах, со вспышкой и без, вообще прибор очень не хотел фотографироваться, мешая мне всеми возможными способами, потому заранее приношу извинение за качество.
На всякий случай напоминаю, что все фото в моих обзорах кликабельны.



«сердцем» прибора является микроконтроллер 12le5a08s2, информации по конкретно этому контроллеру я не нашел, но в даташите другой его версии проскакивала информация что он собран на ядре 8051.

Измерительная часть содержит довольно много элементов, кстати заявлено что процессор имеет 12 бит АЦП, который используется для измерения. Вообще такая разрядность весьма неплохая, скорее интересно насколько это реально.
Изначально думал начертить схему всего этого «безобразия», но потом понял, что особого смысла это не имеет, так как характеристики прибора в плане диапазона измерения не очень большие. Но если кому интересно, то можно попробовать перечертить.

Также в измерительной схеме задействован операционный усилитель, как по мне довольно неплохой, я такой использовал в усилителе сигнала с токового шунта электронной нагрузки.

Судя по всему это узел переключения питания между батареей и USB разъемом.

Снизу платы почти ничего интересного, кроме кнопки компонентов никаких нет:(

Но я нашел интересное даже на пустой печатной плате:)))
Дело в том, что когда я получил прибор и игрался с ним, то категорически не мог заставить его отображать емкость конденсатора выше 680мкФ, он упорно показывал OL и все.
Осматривая плату я не мог не заметить три пары контактов для подключения кнопок (судя по маркировке).
Сначала я ткнул key2, на что получил на экране - калибровка нуля (вольный перевод) - ОК.
Ха, думаю, ну щаззз мы тебя.
А вот и нет, калибровка заняла у меня уйму времени, так как из-за редкости прибора информации по нему нет, вообще. Единственное упоминание со словом калибровка было .

Замыкание других пар контактов выводит на экран значения констант (судя по всему).
причем были еще варианты, с другими буквами, а также иногда при замыкании key3 проскакивала надпись - Сохранено ОК (на англ ессно).

Но вернемся к калибровке.
Прибор сопротивлялся всем своими силами.
Для начала я попробовал коротнуть клеммы пинцетом и калибровать так, но прибор в итоге показывал правильную емкость и отрицательное сопротивление у конденсаторов.
После этого я коротнул два тестовых пятачка на плате, прибор стал показывать корректное сопротивление, но диапазон измерения емкости сузился до 220-330 мкФ.
И уже после долгих поисков в инете я наткнулся на фразу (ссылка есть чуть выше) - Use 3cm thick copper wire for short circuit to clear
В переводе это означало - используйте медный провод толщиной 3см. я подумал что толщина в 3см это как то круто и скорее всего имелось в виду 3см длины.
Отрезал кусочек провода длиной около 3см и коротнул патчки на плате, стало работать гораздо лучше, но все равно не так.
Взял провод подлиннее раза в два и повторил операцию. После этого прибор стал работать уже вполне нормально и дальнейшие тесты я проводил уже после этой калибровки.

Для начала я подобрал разных компонентов, при помощи которых буду проверять как работает прибор.
На фото они уложены в соответствии с порядком тестирования, только дроссели лежат наоборот.
Все компоненты проверялись от меньшего номинала к большему.

Перед тестами я посмотрел осциллографом что выдает прибор на свои измерительные клеммы.
Судя по показаниям осциллографа частота установлена примерно на 72КГц.

В плане измерения индуктивности показания вполне сошлись с указанными на компонентах.
1. индуктивность 22мкГн
2. индуктивность 150мкГн
Кстати, в процессе калибровки я заметил, что никакие манипуляции не влияли на точность измерения емкости и индуктивности, а отражались только на точности измерения сопротивления.

С индуктивностью 150мкГн форма сигнала на клеммах выглядела так

С конденсаторами небольшой емкости также не возникло проблем.
1. 100нФ 1%
2. 0.39025 мкФ 1%

Форма сигнала при измерении конденсатора 0.39025 мкФ

Дальше пошли электролиты.
1. 4.7мкФ 63В
2. 10мкФ 450В
3. 470мкФ 100 Вольт
4. 470мкФ 25 В lowESR
Отдельно скажу насчет конденсатора 10мкФ 450 Вольт. Меня очень удивили показания и это не дефект конкретного элемента, так как конденсаторы новые и у меня их два одинаковых. показания также были одинаковые у обоих и другие приборы показывали именно емкость около 10мкФ. мало того, даже на этом приборе пару раз проскочили показания со значением около 10мкФ. почему так, мне непонятно.

1. 680мкФ 25 Вольт низкоимпедансный
2. 680мкФ 25 Вольт lowESR.
3. 1000мкФ 35 Вольт обычный Samwha.
4. 1000мкФ 35 Вольт Samwha RD серия.

Форма сигнала на контактах при тестировании обычного 1000мкФ 35 Вольт Samwha.
По идее, при измерении емких электролитов, частота должна была упасть до 3КГц, но на осциллограмме явно видно, что частота не менялась в процессе всех тестов и составляла около 72КГц.

1000мкФ 35 Вольт Samwha RD серии иногда выдавал и такой результат, проявлялось это при плохом контакте выводов с измерительными клеммами.

Уже после того как сделал групповое фото, измерил и сложил детали по своим местам я вспомнил, что забыл измерить сопротивление резисторов.
Для измерения я взял пару резисторов
1. 0.1 Ома 1%
2. 0.47 Ома 1%
Сопротивление второго резистора несколько завышено и явно вылазит за предел 1%, скорее даже ближе к 10%. но я думаю что это скорее сказывается то, что измерение проходит на переменном токе и влияет индуктивность проволочного резистора, так как мелкий резистор на 2.4 Ома показал сопротивление 2.38 Ома.

Когда искал информацию по прибору, то пару раз натыкался на фото этого прибора, где показано одновременное измерение с разными частотами, но мой прибор такое не выводит, опять же непонятно почему:(
То ли другая версия, то ли еще что, но разница есть. У меня вообще сложилось впечатление, что измеряет он только на частоте 72КГц.
Высокая частота измерения это хорошо, но всегда удобно иметь альтернативу.

Резюме
Плюсы
В работе прибор показал довольно неплохую точность (правда после калибровки)
Если не учитывать то, что мне пришлось его калибровать, то можно сказать что конструкция готова к работе «из коробки», но допускаю что это мне так «повезло».
Двойное питание.

Минусы
Полное отсутствие информации по калибровке прибора
Узкий диапазон измерения
У меня прибор нормально начал работать только после калибровки.

Мое мнение. Если честно, то у меня создалось стойкое двоякое впечатление о приборе. С одной стороны я получил вполне неплохие результаты, а с другой я получил больше вопросов чем ответов.
Например я так на 100% и не понял как его правильно калибровать, также не понял почему мой конденсатор на 10мкФ отображается как 2.3, ну и кроме того непонятно, почему измерение проходит только на 72КГц.
Я даже не знаю, рекомендовать его или нет. Если паять совсем не хочется, то можно использовать этот или транзистор тестер из прошлого обзора, а если хочется лучших характеристик (в основном в сторону расширения диапазона) и не нужно измерять индуктивности, то можно собрать C-ESR метр от Go.
Очень расстроил верхний диапазон измерения емкости в 1000мкФ, хотя я спокойно измерял и 2200 мкФ, но точность прибора падала, он начинал явно завышать показания емкости.

В общем на этом пока все, очень буду рад любой информации по прибору и с удовольствием добавлю ее в обзор. Допускаю что у кого нибудь он тоже есть, хотя и очень маловероятно, так как я не нашел по нему ничего, хотя часто все приборы являются повторением каких то уже известных конструкций.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +45 Добавить в избранное Обзор понравился +48 +115

Этот прибор измерительной лаборатории с достаточной для радиолюбительской практики точностью позволяет измерять: сопротивление резисторов-от 10 Ом до 10 МОм, емкость конденсаторов - от 10 пФ до 10 мкФ, индуктивность катушек и дросселей- от 10 ..20 мкГн до 8… 10 мГн. Метод измерения - мостовой. Индикация балансировки измерйтельного моста - звуковая с помощью головных телефонов. Точность измерений во многом зависит от тщательности подбора образцовых деталей и градуировки шкалы.

Принципиальная схема прибора изображена на рис. 53. Измеритель состоит из простейшего реохордного измерительного^ моста, генератора электрических колебаний звуковой частоты и усилителя тока. Питается прибор постоянным ♦напряжением 9 В, снимаемым с нерегулируемого выхода блока питания лаборатории. Прибор можно питать и от автономного источника, например батареи «Крона», аккумуляторной батареи 7Д-0,115 или двух соединенных последовательно батарей 3336J1. Прибор сохраняет работоспособность при снижении напряжения питания до 3… 4,5 В, однако громкость сигнала в телефонах, особенно при измерении небольших емкостей, в этом случае заметно падает.

Генератор, питающий измерительный мост, представляет собой симметричный мультивибратор на транзисторах VT1 и VT2. Конденсаторы С1 и С2 создают между коллекторными и базовыми цепями транзисторов положительную -обратную связь по переменному току, благодаря чему мультивибратор самовозбуждается и генерирует электрические колебания, близкие по форме к прямоугольным. Резисторы и конденсаторы мультивибратора подобраны таким образом, что он генерирует колебания частотой около 1000 Гц. Напряжение такой частоты воспроизводится телефонами (или динамической головкой) примерно как звук «си» второй октавы.

Рис. 53. Принципиальная схема измерителя RCL

Электрические ’колебания мультивибратора усиливаются усилителем на транзисторе VT3 и с его нагрузочного резистора R5 поступают в диагональ питания измерительного моста. Переменный резистор R5 выполняет функции реохорда. Плечо сравнения образуют образцовые резисторы R6-R8, конденсаторы СЗ-С5 и катушки индуктивности L1 и L2, поочередно включаемые з мост переключателем SA1. Измеряемый резистор R x или катушку индуктивности L x подсоединяют к зажимам ХТ1, ХТ2, а конденсатор С х - к зажимам ХТ2, ХТЗ. Головные телефоны BF1 включают в измерительную диагональ моста через гнезда XS1 и XS2 При любом виде измерений мост балансируют реохордом R5, добиваясь полного пропадания или наименьшей громкости звука в телефонах. Сопротивление R XJ емкость С х или индуктивность L x отсчитывают по шкале реохорда в относительных единицах.

Множители возле переключателя вида и пределов измерений SA1 показывают, на сколько ом, микрогенри. или ликофарад надо умножить отсчитанное по шкале показание, чтобы определить измеряемое сопротивление резистора, емкость конденсатора или индуктивность катушки. Так, например, если при балансе моста считанное со шкалы реохорда показание равно 0,5, а переключатель SA1 находится в положении «ХЮ 4 пФ», то емкость измеряемого конденсатора С х равна 5000 пФ (0,005 мкФ).

Резистор R6 ограничивает коллекторный τόκ транзистора VT3, возрастающий при измерении индуктивности, и тем самым предотвращает возможный тепловой пробой транзистора.

Конструкция и детали. Внешний вид и конструкция прибора показаны на рис. 54. Большая часть деталей размещена на монтажной плате из гетинакса, закрепленной в корпусе на П-образных кронштейнах высотой 35 мм. Под монтажной платой можно установить батарею автономного питания прибора. Переключатель SA1, выключатель питания Q1 и колодка с гнездами XS1, XS2 для подключения головных телефонов закреплены непосредственно на передней стенке корпуса.

Разметка отверстий в передней стенке корпуса показана на рис. 55. Прямоугольное отверстие размерами 30X15 мм в нижней части стенки, предназначено для выступающих вперед зажимов ХТ1-ХТЗ. Такое же отверстие в правой части стенки является «окном» шкалы, круглое отверстие под ним предназначено для валика переменного резистора R5. Отверстие диаметром 12,5 мм предназначено для выключателя питания, функции которого выполняет тумблер ТВ2-1, отверстие диаметром 10,5 мм - для галетного переключателя SA1 на 11 положений (используется только восемь) и одно направление. Пять отверстий диаметром 3,2 мм с зенковкой служат для винтов крепления гнездовой колодки, полочки с зажимами ХТ1-ХТЗ и кронштейна резистора R5, четыре отверстия диаметром 2,2 мм (также с зенковкой) - для заклепок крепления уголков, к которым привинчивают крышку.

Надписи, поясняющие назначение ручек управления, зажимов и гнезд, выполнены на плотной бумаге, которая затем накрывается пластиной из прозрачного органического стекла толщиной 2 мм. Для крепления этой накладки к корпусу использованы гайки выключателя питания Q1, переключателя SA1 и

Рис. 54. Внешний вид и конструкция измерителя RCL

три винта М2Х4, ввинченные в резьбовые отверстия в накладке с внутренней стороны корпуса.

Конструкция зажимов для подключения к прибору резисторов, конденсаторов и катушек индуктивности, параметры которых надо измерить, показана на рис. 56. Каждый зажим состоит из деталей 2 и 3, закрепленных на гетинахсовой плате 1 заклепками 4 Соединительные провода припаивают к монтажным лепесткам 5. Детали зажимов изготавливают из твердой латуни или бронзы толщиной 0,4… 0,5 мм. При работе с прибором нажимают на верхнюю часть детали 2 до совмещения отверстия в ней с отверстиями в нижней части этой же детали и детали 3 и вставляют в них вывод измеряемой детали. Необхо

Рис. 55. Разметка передней стенки корпуса

Рис. 56. Устройство колодки с зажимами для подсоединения выводов радиодеталей:

1-плата; 2, 3 - пружинящие контакты; 4 -заклепки; 5 - монтажный лепесток; 6 - -уголок

Рис. 57. Устройство шкального механизма:

лей желательно проверить на измерительном приборе заводского изготовления.

Образцовая катушка L1, индуктивность которой должна быть равна 100 мкГн, содержит 96 витков провода ПЭВ-1 0,2, намотанного виток к витку на цилиндрическом каркасе внешним диаметром 17,5 мм, или 80 витков такого же провода, намотанного на каркасе диаметром 20 мм. В качестве каркаса можно использовать картонные гильзы патронов для охотничьих ружей 20или 12-го калибра. Каркас катушки насажен на кружок, выпиленный из гетинакса и приклеенный к монтажной плате клеем БФ-2.

Индуктивность образцовой катушки L2 в десять раз больше (1 мГн). Она содержит 210 витков провода ПЭВ-1 0,12, намотанного на унифицированном трехсекционном полистироловом каркасе, и помещена в карбонильный броневой магнитопровод СБ-12а. Ее индуктивность подгоняют подстроечником, входящим в комплект магнитопровода. Последний приклеен к монтажной плате клеем БФ-2.

Индуктивность обеих катушек желательно подогнать до установки в измеритель. Лучше всего это сделать с помощью прибора заводского изготовления. Следует отметить, что если первую катушку изготовить точно по описанию, та она будет иметь близкую к необходимой индуктивность и по ней в собранном измерителе можно будет подогнать индуктивность второй катушки.

Налаживание прибора, градуировка шкалы. Если в измерителе использованы предварительно проверенные и отобранные транзисторы, резисторы и конденсаторы, мультивибратор и усилитель должны нормально работать без какого-либо налаживания. В этом нетрудно убедиться, соединив проволочной перемычкой зажимы ХТ1 и ХТ2 или ХТ2 и ХТЗ. В телефонах должен появиться звук, громкость которого изменяется при перемещении движка реохорда из одного крайнего положения в другое. Если звука нет, значит, допущена ошибка в монтаже мультивибратора или неправильно подключен источник питания.

Желательную высоту (тон) звука в телефонах можно подобрать изменением емкости конденсатора С1 или С2. С уменьшением их емкости высота звука повышается, а с увеличением - понижается.

Рис. 59. Шкала измерителя RCL

Поскольку шкала прибора общая для всех видов и пределов измерений, ее можно отградуировать на одном из пределов’ с помощью магазина сопротивлений. Допустим, что шкала прибора градуируется на поддиапазоне, соответствующем образцовому резистору R8 (10 кОм). Переключатель SA1 в этом случае устанавливают в положение «ХЮ 4 Ом», а к зажимам ХТ1 и ХТ2 подключают резистор сопротивлением 10 кОм. После этого мост балансируют, добиваясь пропадания звука в телефонах, и на шкале реохорда напротив стрелки делают исходную риску с отметкой 1. Она будет соответствовать сопротивлению 10 4 Ом, т. е. 10 кОм. Далее к прибору поочередно подключают резисторы сопротивлением 9, 8, 7 кОм и т. д. и делают на шкале отметки, соответствующие долям единицы. В дальнейшем отметка 0,9 на шкале реохорда при измерении сопротивлений этого поддиапазона будет соответствовать сопротивлению 9 кОм (0,9-10 4 Ом = 9000 Ом=9 кОм), отметка 0,8 - сопротивлению 8 кОм (0,8· 10 4 0м = 8000 Ом=8 кОм) и т. д. Далее к прибору подключают резисторы сопротивлением 15, 20, 25 кОм и т. д. и на шкале реохорда делают соответствующие отметки (1,5; 2; 2,5 и т. д). В результате получится шкала, образец которой показан на рис. 59.

Отградуировть шкалу можно также с помощью набора резисторов с допускаемым отклонением от номиналов не более ±5%. Соединяя резисторы параллельно или последовательно, можно получать практически любые значения «образцовых» резисторов.

Отградуированная таким способом шкала пригодна для других видов и пределов измерений только в том случае, если соответствующие им образцовые резисторы, конденсаторы и катушки индуктивности будут иметь параметры, указанные на принципиальной схеме прибора.

Пользуясь прибором, надо помнить, что при измерении емкости оксидных конденсаторов (вывод их положительной обкладки подключают к зажиму ХТЗ) баланс моста ощущается не так четко, как при измерении сопротивлений, поэтому и точность измерений в этом случае меньше. Объясняется такое явление утечкой тока, свойственной оксидным конденсаторам.