Особенности гидравлического расчета системы радиаторного отопления. Гидравлический расчёт системы отопления Гидравлический расчет системы отопления пример excel

Доброго всем времени суток! Сегодня я опишу как нужно делать гидравлический расчет системы отопления и что это вообще такое. Начнем с последнего вопроса.

Что такое гидравлический расчет и зачем он нужен?

Гидравлический расчет (далее ГР) — это математический алгоритм, в результате выполнения которого мы получим необходимый диаметр труб в данной системе (имеется ввиду внутренний диаметр). Кроме того, будет понятно какой нам необходимо использовать — определяется напор и расход насоса. Все это даст возможность сделать систему отопления экономически оптимальной. Производится он на основании законов гидравлики — специального раздела физики, посвященного движению и равновесию в жидкостях.

Теория гидравлического расчета системы отопления.

Теоретически ГР отопления основан на следующем уравнении:

Данное равенство справедливо для конкретного участка. Расшифровывается это уравнение следующим образом:

  • ΔP — линейные потери давления.
  • R — удельные потери давления в трубе.
  • l — длина труб.
  • z — потери давления в отводах, .

Из формулы видно, что потери давления тем больше, чем она длиннее и чем больше в ней отводов или других элементов, уменьшающих проход или меняющих направление потока жидкости. Давайте выведем чему равны R и z. Для этого рассмотрим еще одно уравнение, показывающее потери давления от трения об стенки труб:


ΔP трение = (λ/d)*(v²ρ/2)

Это уравнение Дарси — Вейсбаха. Давайте расшифруем его:

  • λ — коэффициент, зависящий от характера движения трубы.
  • d — внутренний диаметр трубы.
  • ρ — плотность жидкости.

Из этого уравнения устанавливается важная зависимость — потери давления на трение тем меньше, чем больше внутренний диаметр труб и меньше скорость движения жидкости. Причем, зависимость от скорости здесь квадратичная. Потери в отводах, тройниках и запорной арматуре определяются по другой формуле:

ΔP арматура = ξ*(v²ρ/2)

  • ξ — коэффициент местного сопротивления (далее КМС).
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из данного уравнения также видно, что падение давления возрастает с увеличением скорости жидкости. Также, стоит сказать, что в случае применения также будет играть важную роль его плотность — чем она выше тем тяжелее циркуляционному насосу. Поэтому при переходе на «незамерзайку» возможно придется заменить циркуляционный насос.

Из всего вышеизложенного выведем следующее равенство:

ΔP =ΔP трение +ΔP арматура =((λ/d)(v²ρ/2)) + (ξ (v²ρ/2)) = ((λ/α)l (v²ρ/2)) + (ξ*(v²ρ/2)) = R l + z;

Отсюда получаем следующие равенства для R и z:

R = (λ/α)*(v²ρ/2) Па/м;

z = ξ*(v²ρ/2) Па;

Теперь давайте разберемся в том, как используя эти формулы рассчитать гидравлическое сопротивление.

Как на практике считают гидравлическое сопротивление системы отопления.

Часто инженерам приходится рассчитывать системы отопления на больших объектах. В них большое количество приборов отопления и много сотен метров труб, но считать все равно нужно. Ведь без ГР не получится правильно подобрать циркуляционный насос. К тому же ГР позволяет установить еще до монтажа будет ли работать все это.

Для упрощения жизни проектировщикам разработаны различные численные и программные методы определения гидравлического сопротивления. Начнем от ручного к автоматическому.

Приближенные формулы расчета гидравлического сопротивления.

Для определения удельных потерь на трение в трубопроводе используется следующая приближенная формула:

R = 510 4 v 1.9 /d 1,32 Па/м;

Здесь сохраняется практически квадратичная зависимость от скорости движения жидкости в трубопроводе. Данная формула справедлива для скоростей 0,1-1,25 м/с.

Если у вас известен расход теплоносителя, то есть приближенная формула для определения внутреннего диаметра труб:

d = 0.75√G мм;

Получив результат необходимо воспользоваться следующей таблицей для получения диаметра условного прохода:


Наиболее трудоемким будет расчет местных сопротивлений в фитингах, запорной арматуре и приборах отопления. Ранее я упоминал коэффициенты местного сопротивления ξ, их выбор делается по справочным таблицам. Если с углами и запорной арматурой все ясно, то вот выбор КМС для тройников превращается в целое приключение. Чтобы стало понятно о чем я говорю, посмотрим на следующую картинку:


По картинке видно, что у нас имеется целых 4 вида тройников, для каждого из которых будут свои КМС местного сопротивления. Трудность тут будет состоять в правильном выборе направления тока теплоносителя. Для тех кому очень нужно, приведу здесь таблицу с формулами из книги О.Д. Самарина «Гидравлические расчеты инженерных систем»:

Эти формулы можно перенести в MathCAD или любую другую программу и рассчитать КМС с погрешностью до 10 %. Формулы применимы для скоростей движения теплоносителя от 0,1 до 1,25 м/с и для труб с диаметром условного прохода до 50 мм. Такие формулы вполне подойдут для отопления коттеджей и частных домов. Теперь рассмотрим некоторые программные решения.

Программы для расчета гидравлического сопротивления в системах отопления.


Сейчас в интернете можно найти много различных программ для расчета отопления платных и бесплатных. Понятное дело, что платные программы обладают более мощным функционалом, чем бесплатные и позволяют решать более широкий круг задач. Такие программы имеет смыл приобретать профессиональным инженерам-проектировщикам. Обывателю, который хочет самостоятельно посчитать систему отопления в своем доме будет вполне достаточно бесплатных программ. Ниже приведу список наиболее распространенных программных продуктов:

  • Valtec.PRG — бесплатная программа для расчета отопления и водоснабжения. Есть возможности расчета теплых полов и даже теплых стен
  • HERZ — целое семейство программ. С их помощью можно рассчитывать как однотрубные так и двухтрубные системы отопления. Программа имеет удобное графическое представление и возможность разбивки на поэтажные схемы. Имеется возможность расчета тепловых потерь
  • Поток — отечественная разработка, представляющая из себя комплексную САПР, которая может проектировать инженерные сети любой сложности. В отличии от предыдущих, Поток — платная программа. Поэтому простой обыватель вряд ли станет ей пользоваться. Она предназначена для профессионалов.

Есть еще несколько других решений. В основном от производителей труб и фитингов. Производители затачивают программы для расчета под свои материалы и тем самым в какой-то степени вынуждают покупать их материалы. Это такой маркетинговый ход и в нем нет ничего плохого.

Итоги статьи.

Расчет гидравлического сопротивления системы отопления дело прямо-таки не самое простое и требующее опыта. Ошибки здесь могут стоить очень дорого. Отдельные ветки и стояки могут не работать. По ним просто не будет циркуляции. По этой причине лучше чтобы этим занимались люди с образованием и опытом таких работ. Сами монтажники практически никогда не занимаются расчетами. Они везде стремятся делать одни и те же решения, которые работали у них ранее. Но то, что работало у другого человека не обязательно будет работать у вас. По этому настоятельно рекомендую обратиться к инженеру и сделать полноценный проект. На этом пока все, жду ваших вопросов в комментариях.

Выполнить гидравлический расчет системы отопления - это значит так подобрать диаметры отдельных участков сети (с учетом располагаемого циркуляционного давления), чтобы по ним проходил расчетный расход теплоносителя. Расчет ведется подбором диаметра по имеющемуся сортаменту труб.

Для зданий малой этажности наиболее часто применяется двухтрубная система отопления, для повышенной этажности - однотрубная. Для расчета такой системы должны быть следующие исходные данные:

1. Общий для системы перепад температуры теплоносителя (т.е. разность температуры воды в подающей и обратной магистралях).

2. Количество теплоты, которое необходимо подать в каждое помещение для обеспечения требуемых параметров воздуха.

3. Аксонометрическая схема системы отопления с нанесенными на нее нагревательными приборами и регулирующей арматурой.

Последовательность выполнения гидравлического расчета

1. Выбирается главное циркуляционное кольцо системы отопления (наиболее невыгодно расположенное в гидравлическом отношении). В тупиковых двухтрубных системах это кольцо, проходящее через нижний прибор самого удаленного и нагруженного стояка, в однотрубных – через наиболее удаленный и нагруженный стояк.

Например, в двухтрубной системе отопления с верхней разводкой главное циркуляционное кольцо пройдет от теплового пункта через главный стояк, подающую магистраль, через самый удаленный стояк, отопительный прибор нижнего этажа, обратную магистраль до теплового пункта.

В системах с попутным движением воды в качестве главного принимается кольцо, проходящее через средний наиболее нагруженный стояк.

2. Главное циркуляционное кольцо разбивается на участки (участок характеризуется постоянным расходом воды и одинаковым диаметром). На схеме проставляются номера участков, их длины и тепловые нагрузки. Тепловая нагрузка магистральных участков определяется суммированием тепловых нагрузок, обслуживаемых этими участками. Для выбора диаметра труб используются две величины:

а) заданный расход воды;

б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце R ср .

Для расчета R cp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.

3. Определяется расчетное циркуляционное давление по формуле

где - давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное

, (5.2)

где
- сумма длин участков главного циркуляционного кольца;

- естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как

, (5.3)

где - расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.

Значение коэффициента можно определить из табл.5.1.

Таблица 5.1 - Значение в зависимости от расчетной температуры воды в системе отопления

(
), 0 C

, кг/(м 3 К)

- естественное давление, возникающее в результате охлаждения воды в трубопроводах .

В насосных системах с нижней разводкой величиной
можно пренебречь.

    Определяются удельные потери давления на трение

, (5.4)

где к=0,65 определяет долю потерь давления на трение.

5. Расход воды на участке определяется по формуле

(5.5)

(t г - t о) – разность температур теплоносителя.

6. По величинам
и
подбираются стандартные размеры труб .

6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение R ф .

При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения между
и
. Заниженные потери
на этих участках компенсируются завышением величин
на других участках.

7. Определяются потери давления на трение на расчетном участке, Па:

. (5.6)

Результаты расчета заносят в табл.5.2.

8. Определяются потери давления в местных сопротивлениях, используя или формулу:

, (5.7)

где
- сумма коэффициентов местных сопротивлений на расчетном участке .

Значение ξ на каждом участке сводят в табл. 5.3.

Таблица 5.3 - Коэффициенты местных сопротивлений

9. Определяют суммарные потери давления на каждом участке

. (5.8)

10. Определяют суммарные потери давления на трение и в местных сопротивлениях в главном циркуляционном кольце

. (5.9)

11. Сравнивают Δр с Δр р . Суммарные потери давления по кольцу должны быть меньше величины Δр р на

Запас располагаемого давления необходим на неучтенные в расчете гидравлические сопротивления.

Если условия не выполняются, то необходимо на некоторых участках кольца изменить диаметры труб.

12. После расчета главного циркуляционного кольца производят увязку остальных колец. В каждом новом кольце рассчитывают только дополнительные не общие участки, параллельно соединенные с участками основного кольца.

Невязка потерь давлений на параллельно соединенных участках допускается до 15% при тупиковом движении воды и до 5% – при попутном.

Таблица 5.2 - Результаты гидравлического расчета для системы отопления

, Вт

На схеме трубопровода

По предварительному расчету

По окончательному расчету

Номер участка

Расход теплоносителя G , кг/ч

Длина участка l , м

Диаметр d , мм

Скорость v , м/с

Удельные потери давления на трение R , Па/м

Потери давления на трение Δр тр , Па

Сумма коэффициентов местных сопротивлений ∑ξ

Потери давления в местных сопротивлениях Z

d , мм

v , м/с

R , Па/м

Δр тр , Па

Z , Па

Rl + Z , Па

Централизованный тип постепенно уступает место автономной системе отопления. Многие принимают решение обогревать помещения собственными силами, желая создать идеальное сочетание экономичности, тепла и комфорта. Именно поэтому особую актуальность приобретает гидравлический расчет системы отопления.

На начальном этапе предстоят финансовые траты. Однако новейшее отопительное оборудование обладает инновационным подходом к процессу регулирования подачи тепла по сравнению со старым, поэтому вложенные деньги быстро окупаются. Но такую гармонию могут обеспечить лишь системы, созданные по всем правилам. Они смогут профессионально преодолеть возникающее гидравлическое сопротивление.

Для чего делается расчет

Вычисления производят в первую очередь для того, чтобы определить такие характеристики циркуляционного насоса, как производительность и напор, которые позволят системе отопления работать с наибольшей эффективностью.

Конечно, какую-то циркуляцию в контуре создаст любой насос, даже самый маломощный, но насколько экономичной будет такая схема? Часто бывает так, что и котел исправно работает и радиаторов в доме достаточно, но они не греют из-за слабой циркуляции в системе.

Чтобы контуры отопления работали в полную силу, необходимо, чтобы насос преодолел гидравлическое сопротивление элементов системы потоку воды в трубах, а также потери давления. Но и насос большей мощности, чем нужно, также приведет к нежелательным эффектам. Кроме повышенного расхода электроэнергии, превышение давления плохо скажется на долговечности соединений, а увеличение скорости продвижения теплоносителя приведет к возникновению шумов.


Правильно рассчитанное гидравлическое сопротивление и качественная регулирующая арматура – наиболее эффективное сочетание.

Соблюдение ключевых условий обеспечивают следующие факторы:

  • снабжение отопительных приборов должно осуществляться в достаточном объеме для идеального баланса в помещении при температурных колебаниях воздуха снаружи и в жилище;
  • минимизация затрат на эксплуатацию, чтобы преодолеть системное гидравлическое сопротивление;
  • снижение капитальных затрат во время прокладки отопления.

Что учитывается в расчете?

Перед тем как начинать вычисления, следует выполнить ряд графиче

ских действий (часто для этого применяется специальная программа). Гидравлический расчет предполагает определение показателя баланса тепла помещения, в котором происходит отопительный процесс.

Для расчета системы рассматривается самый протяженный контур отопления, включающий наибольшее количество приборов, фитингов, регулирующей и запорной арматуры и наибольший перепад давления по высоте. В расчете участвуют такие величины:

  • материал трубопроводов;
  • суммарная длина всех участков трубы;
  • диаметр трубопровода;
  • изгибы трубопровода;
  • сопротивление фитингов, арматуры и отопительных приборов;
  • наличие байпасов;
  • текучесть теплоносителя.

Чтобы учесть все эти параметры существуют специализированные компьютерные программы, как пример - «НТП Трубопровод», «Oventrop CO», HERZ С.О. версии 3.5. или множество их аналогов, облегчающие специалистам производство расчетов.

Сделать верные расчеты в части преодоления сопротивления – это самый трудоемкий, но нео

бходимый шаг при проектировании отопительных систем водяного типа.

Выбор радиаторов и длины участков трубопровода

Необходимо определиться с видом устройств для отопления и проставить места их расположение на плане помещения. Далее должно быть принято решение об итоговой конфигурации отопительной системы, вида трубопровода (однотрубный или двухтрубный), арматуры для запора и регулирования (клапана, регуляторы, вентили, датчики давления, расхода и температуры).


Затем на вычерченной схеме указывается номер тепловых нагрузок и точная длина участков, для которых производится расчет. В заключении определяется «циркулирующее кольцо». Оно представляет собой контур замкнутого вида, который включает в себя все последовательные трубопроводные участки, на которых ожидается повышенный расход носителя тепла на расстоянии от источника, излучающего теплоэнергию, до самого дальнего прибора отопления (при двухконтурной системе) или до приборной ветки (при однотрубной системе) и назад к отопительному механизму.

Нюансы

При гидравлическом расчете с помощью компьютера excel – не единственная, хоть и наиболее простая. Для данного вида подсчетов разработаны специализированные программы, с которыми работать значительно проще.

В роли расчетного трубопровода обычно выступает участок, имеющий неизменный расход носителя тепла и постоянный диаметр. Так будет проще получить правильные данные. Он определяется по тепловому балансу помещения.


Нумерация участков должна происходить от теплового источника. Чтобы обозначить узловые точки на трубопроводе, который осуществляет подачу, в местах ответвлений применяют буквы алфавита. На магистралях сборного типа в соответствующих узлах их обозначают штрихами (пример хорошо это иллюстрирует).

Узловые точки на ответвлениях приборных веток обозначаются арабскими цифрами. Каждая соответствует номеру этажа, если применяется система горизонтального типа, или номеру ветки-стояка с приборами, если речь идет о вертикальной системе. В номер всегда входят две цифры – начало и конец участка. Длина трубопроводных участков определяется по плану, который вычерчивается в масштабе. Точность составляет 0,1 м.

Расчет однотрубной системы отопления рекомендуется проводить при одинаковых (постоянных) или различных (переменных) перепадах температуры воды в стояках методом характеристик сопротивления. При этом следует применять верхнюю разводку, при которой обеспечивается движение воды к отопительному прибору «сверху-вниз».

Отопление на основе циркуляции горячей воды – наиболее распространенный вариант обустройства частного дома. Для грамотной разработки системы необходимо иметь предварительные результаты анализа, так называемый гидравлический расчет системы отопления, увязывающий давление на всех участках сети с диаметрами труб.

В представленной статье подробно описана методика вычислений. Чтобы лучше понять алгоритм действий, мы рассмотрели порядок расчета на конкретном примере.

Придерживаясь описанной последовательности, получится определить оптимальный диаметр магистрали, количество отопительных приборов, мощность котла и прочие параметры системы, необходимые для обустройства эффективного индивидуального теплоснабжения.

Определяющим фактором технологического развития систем отопления стала обычная экономия на энергоноситель. Стремление сэкономить заставляет тщательней подходить к проектированию, выбору материалов, способов монтажа и эксплуатации отопления для жилища.

Поэтому, если вы решили создать уникальную и в первую очередь экономную систему отопления для своей квартиры или дома, тогда рекомендуем ознакомится с правила расчета и проектирования.

Галерея изображений

В результате проведения гидравлического расчёта получаем несколько важных характеристик гидравлической системы, которые дают ответы на следующие вопросы:

  • какая должна быть мощность источника отопления;
  • какой расход и скорость теплоносителя;
  • какой нужен диаметр основной магистрали теплового трубопровода;
  • какие возможные потери теплоты и самой массы теплоносителя.

Еще одним важным аспектом гидравлического расчёт является процедура баланса (увязки) всех частей (веток) системы во время экстремальных тепловых режимов с помощью регулирующих приборов.

Выделяют несколько основных видов отопительных изделий: чугунные и алюминиевые многосекционные, стальные панельные, биметаллические радиаторы и ковекторы. Но наиболее распространёнными являются алюминиевые многосекционные радиаторы

Расчетной зоной трубопроводной магистрали есть участок с постоянным диаметром самой магистрали, а также неизменяемым расходом горячей воды, который определён по формуле теплового баланса комнат. Перечисление расчётных зон начинается от насоса или источника тепла.

Начальные условия примера

Для более конкретного пояснения всех деталей гидравлического просчёта возьмем конкретный пример обычного жилищного помещения. В наличии имеем классическую 2-комнатную квартиру панельного дома, общей площадью 65,54 м 2 , которая включает две комнаты, кухню, раздельные туалет и ванная, двойной коридор, спаренный балкон.

После сдачи в эксплуатацию получили следующую информацию относительно готовности квартиры. Описываемая квартира включает обработанные шпаклевкой и грунтом стены из монолитных железо-бетонных конструкций, окна из профиля с двух камерными стеклами, тырсо-прессованные межкомнатные двери, керамическая плитка на полу санузла.

Типичный панельный 9-этажный дом на четыре подъезда. На каждом этаже по 3 квартиры: одна 2-комнатная и две 3-комнатных. Квартира расположена на пятом этаже

Кроме того, представленное жильё уже оснащено медной проводкой, распределителями и отдельным щитком, газовой плитой, ванной, умывальником, унитазом, полотенцесушителем, мойкой.

И самое главное в жилых комнатах, ванной и кухне уже имеются алюминиевые отопительные радиаторы. Вопрос относительно труб и котла остаётся открытым.

Как производится сбор данных

Гидравлический расчёт системы в большинстве своём основывается на вычислениях связанных с расчетом отопления по площади помещения.

Поэтому необходимо иметь следующую информацию:

  • площадь каждого отдельного помещения;
  • габариты оконных и дверных разъёмов (внутренние двери на потери теплоты практически не влияют);
  • климатические условия, особенности региона.

Будем исходить из следующих данных. Площадь общей комнаты – 18,83 м 2 , спальня – 14,86 м 2 , кухня – 10,46 м 2 , балкон – 7,83 м 2 (сумма), коридор – 9,72 м 2 (сумма), ванная – 3,60 м 2 , туалет – 1,5 м 2 . Входные двери – 2,20 м 2 , оконная витрина общей комнаты – 8,1 м 2 , окно спальни – 1,96 м 2 , окно кухни – 1,96 м 2 .

Высота стен квартиры – 2 метра 70 см. Внешние стены изготовлены с бетона класса В7 плюс внутренняя штукатурка, толщиной 300 мм. Внутренние стены и перегородки – несущие 120 мм, обычные – 80 мм. Пол и соответственно потолок из бетонных плит перекрытия класса В15, толщина 200 мм.

Экономия тепла в жилище во многом зависит от грамотного расчета гидравлики, ее правильного монтажа, а также использования. Все элементы обогревающей системы (котел, теплопроводные трубы и радиаторы, отдающие тепло) должны быть связаны между собой так, чтобы сохранялись исходные параметры системы, независимо оттого, какое время года за окном и какие оказываются нагрузки.

Что обозначает расчет гидравлики и зачем он нужен

Сделать гидравлический расчет отопления – это значит правильно подобрать параметры определенных участков сети с учетом давления, чтобы по ним осуществлялся определенный расход теплоносителя.

Этот расчет дает возможность определить:

  • Потери давления на различных участках сети;
  • Пропускную способность трубопровода;
  • Оптимальный расход жидкости;
  • Необходимые показатели для выполнения гидравлической увязки.

Совмещая все полученные данные можно подобрать отопительные насосы.

Главная цель расчета гидравлики – обеспечение соответствия посчитанных расходов источника тепла с фактическими.

Количество попадающего в радиаторы источника тепла должно быть таким, чтобы получился обогревающий баланс внутри здания с учетом уличной температуры и температуры, заданной пользователем для каждой комнаты в отдельности.


Если отопление автономное, можно использовать такие методы расчета:

  • Используя характеристики сопротивления и проводимости;
  • По удельным расходам;
  • Путем сравнивания динамического давления;
  • По различным длинам, приведенным к одному показателю.

Расчет гидравлики – один из важнейших этапов при разработке систем отопления с жидким теплоносителем.

Прежде чем приступить к его осуществлению необходимо:

  • Определить баланс тепла в необходимых помещениях;
  • Выбрать тип приборов отопления и разместить их на чертежах здания;
  • Решить вопросы по конфигурации обогревательной системы, а также по видам применяемых труб и арматуры;
  • Начертить схему системы отопления, где будут видны номера, нагрузки и длины необходимых участков;
  • Определить основное циркуляционное кольцо, по которому движется теплоноситель.

Обычно для зданий с малым количеством этажей применятся двухтрубная отопительная система, а для построек с большой этажностью – однотрубная.

Автоматизированный гидравлический расчет системы отопления Excel

Чтобы было удобнее делать гидравлические расчеты, можно воспользоваться различными компьютерными программами, позволяющими выполнять точные вычисления. Одной из самых таких популярных программ считается Excel.

Кстати, если вы не знаете основ гидравлики, то сделать вам это будет трудно, даже в компьютерных программах. Это связано с тем, что в некоторых из них нет расшифровок формул и вычислений сопротивления в особо сложных цепочках.

Нюансы некоторых программ:

  • OvertopCO и DanfossCO могут вести расчеты систем с естественной циркуляцией;
  • HERZ C.O. 3.5 – работает по способу расчета удельных потерь давления;
  • Potok – отлично справляется с расчетами по изменяющимся перепадам температур по стоякам.

При вводе температурных данных нужно обязательно уточнять – по Цельсию идет вычисление или по Кельвину.

Что касается работы в Excel, то использовать электронные таблицы очень удобно. Нужно просто знать поочередность действий и точные вычислительные формулы. Вначале выбирается нужная ячейка, в которую вводятся данные. Дальнейший расчет происходит путем автоматического применения формул.


  • Разницу между горячим и холодным источником тепла для двухтрубной системы или расход жидкости для однотрубной;
  • Скорость движения источника тепла и его потока;
  • Плотность жидкости и параметры исследуемых участков (их длина в метрах и число находящихся там приборов).

Для расчета размеров труб внутри каждого участка как раз удобно пользоваться экселевскими таблицами.

Как вычислить гидравлическое сопротивление системы отопления

Чтобы решить из какого материала брать трубы, нужно узнать сопротивление гидравлики на всех участках системы обогрева и сравнить его.

Сопротивление может возникать в самой трубе из-за ее поворотов, сужений или расширений, а также в соединениях между шаровыми кранами, тройниками или балансирующими приборами.

Расчетным участком обычно считается труба с неменяющимся расходом жидкости, равным запланированному балансу тепла помещения.

Для расчета потерь берутся следующие данные, учитывая сопротивление арматуры:

  • Диаметр и длина трубы на нужном участке;
  • Параметры регулировочной арматуры от фирмы-производителя;
  • Скорость, с которой движется теплоноситель;
  • Шероховатость трубопровода и толщина его стенок;
  • Данные из справочника: потери трения и его коэффициент, плотность жидкости.

Если нужно самостоятельно вычислить удельные потери трения нужно знать внешний диаметр трубы, толщину ее стенки и скорость, с которой подается жидкость.

Чтобы найти гидравлическое сопротивление на одном участке, можно воспользоваться формулой Дарси-Вейсбаха:

Гидравлика системы отопления и ее увязка

Балансирование перепадов давления в системе отопления осуществляется с помощью запорной и регулировочной арматуры.


Увязка гидравлики рассчитывается исходя из:

  • Параметров труб по динамическому сопротивлению;
  • Технических свойств арматуры;
  • Общего расхода источника тепла;
  • Количестваимеющихся сопротивлений на расчетном участке.

Здесь нужно иметь в виду, что способность пропускать, давленческие перепады и крепления определяются для клапанов по отдельности. Именно по этим характеристикам вычисляются коэффициенты попадания источника тепла в каждый стояк, а затем в радиаторы.

Отсутствие гидравлической увязки в отопительной системе может привести к тому, что в некоторых помещениях будет очень сложно достичь нужной температуры.

Сопротивление гидравлики в основном циркуляционном кольце равно сумме потерь местных систем, первичного контура, теплообменника и теплогенератора.

Гидравлический расчет системы отопления (видео)

Выполняя гидравлический расчет, вы делаете отопительную систему более совершенной, правильно подбирая ее параметры таким образом, чтобы в любую погоду, при любых нагрузках расход источника тепла не превышал заданные нормы.